Digita un'equazione o un problema
L'input della fotocamera non viene riconosciuto!

Soluzione - Sequenze geometriche

Il rapporto comune è: r=10
r=-10
La somma di questa serie è: s=9090
s=9090
La forma generale di questa serie è: an=1010n1
a_n=-10*-10^(n-1)
L'n-esimo termine di questa serie è: 10,100,1000,10000,100000,1000000,10000000,100000000,1000000000,10000000000
-10,100,-1000,10000,-100000,1000000,-10000000,100000000,-1000000000,10000000000

Altri modi per risolvere

Sequenze geometriche

Spiegazione passo passo

1. Calcola il rapporto comune

Calcola il rapporto comune dividendo ogni termine della sequenza per il termine che lo segue:

a2a1=10010=10

a3a2=1000100=10

a4a3=100001000=10

Il rapporto comune (r) della sequenza è costante e uguale al quoziente di due termini consecutivi.
r=10

2. Calcola la somma

5 passaggi aggiuntivi

sn=a*((1-rn)/(1-r))

Per calcolare la somma della serie, inserisci il primo termine: a=10, il rapporto comune: r=10, e il numero di elementi n=4 nella formula della somma della serie geometrica:

s4=-10*((1--104)/(1--10))

s4=-10*((1-10000)/(1--10))

s4=-10*(-9999/(1--10))

s4=-10*(-9999/11)

s4=10909

s4=9090

3. Calcola la forma generale

an=arn1

Per calcolare la forma generale della serie, inserisci il primo termine: a=10 e il rapporto comune: r=10 nella formula per le serie geometriche:

an=1010n1

4. Calcola l'n-esimo termine

Usa la forma generale per calcolare l'n-esimo termine

a1=10

a2=a1·rn1=101021=10101=1010=100

a3=a1·rn1=101031=10102=10100=1000

a4=a1·rn1=101041=10103=101000=10000

a5=a1·rn1=101051=10104=1010000=100000

a6=a1·rn1=101061=10105=10100000=1000000

a7=a1·rn1=101071=10106=101000000=10000000

a8=a1·rn1=101081=10107=1010000000=100000000

a9=a1·rn1=101091=10108=10100000000=1000000000

a10=a1·rn1=1010101=10109=101000000000=10000000000

Perché imparare questo

Las secuencias geométricas se utilizan comúnmente para explicar conceptos en matemáticas, física, ingeniería, biología, economía, informática, finanzas y más, lo que las convierte en una herramienta muy útil para tener en nuestras cajas de herramientas. Una de las aplicaciones más comunes de las secuencias geométricas, por ejemplo, es el cálculo de interés compuesto ganado o no pagado, una actividad más comúnmente asociada con las finanzas que podría significar ganar o perder mucho dinero! Otras aplicaciones incluyen, pero ciertamente no se limitan a, calcular la probabilidad, medir la radiactividad con el tiempo y diseñar edificios.

Termini e argomenti