Digita un'equazione o un problema
L'input della fotocamera non viene riconosciuto!

Soluzione - Sequenze geometriche

Il rapporto comune è: r=4,842105263157895
r=4,842105263157895
La somma di questa serie è: s=111
s=-111
La forma generale di questa serie è: an=194,842105263157895n1
a_n=-19*4,842105263157895^(n-1)
L'n-esimo termine di questa serie è: 19,92,445,4736842105263,2157,0304709141274,10444,568596005247,50573,70057013067,244883,18170800115,1185750,1430071637,5741527,008245212,27801078,145187344
-19,-92,-445,4736842105263,-2157,0304709141274,-10444,568596005247,-50573,70057013067,-244883,18170800115,-1185750,1430071637,-5741527,008245212,-27801078,145187344

Altri modi per risolvere

Sequenze geometriche

Spiegazione passo passo

1. Calcola il rapporto comune

Calcola il rapporto comune dividendo ogni termine della sequenza per il termine che lo segue:

a2a1=9219=4,842105263157895

Il rapporto comune (r) della sequenza è costante e uguale al quoziente di due termini consecutivi.
r=4,842105263157895

2. Calcola la somma

5 passaggi aggiuntivi

sn=a*((1-rn)/(1-r))

Per calcolare la somma della serie, inserisci il primo termine: a=19, il rapporto comune: r=4,842105263157895, e il numero di elementi n=2 nella formula della somma della serie geometrica:

s2=-19*((1-4,8421052631578952)/(1-4,842105263157895))

s2=-19*((1-23,445983379501385)/(1-4,842105263157895))

s2=-19*(-22,445983379501385/(1-4,842105263157895))

s2=-19*(-22,445983379501385/-3,8421052631578947)

s2=195,842105263157895

s2=111

3. Calcola la forma generale

an=arn1

Per calcolare la forma generale della serie, inserisci il primo termine: a=19 e il rapporto comune: r=4,842105263157895 nella formula per le serie geometriche:

an=194,842105263157895n1

4. Calcola l'n-esimo termine

Usa la forma generale per calcolare l'n-esimo termine

a1=19

a2=a1·rn1=194,84210526315789521=194,8421052631578951=194,842105263157895=92

a3=a1·rn1=194,84210526315789531=194,8421052631578952=1923,445983379501385=445,4736842105263

a4=a1·rn1=194,84210526315789541=194,8421052631578953=19113,52791952179618=2157,0304709141274

a5=a1·rn1=194,84210526315789551=194,8421052631578954=19549,7141366318551=10444,568596005247

a6=a1·rn1=194,84210526315789561=194,8421052631578955=192661,7737142174037=50573,70057013067

a7=a1·rn1=194,84210526315789571=194,8421052631578956=1912888,58851094743=244883,18170800115

a8=a1·rn1=194,84210526315789581=194,8421052631578957=1962407,902263534925=1185750,1430071637

a9=a1·rn1=194,84210526315789591=194,8421052631578958=19302185,6320129059=5741527,008245212

a10=a1·rn1=194,842105263157895101=194,8421052631578959=191463214,6392203865=27801078,145187344

Perché imparare questo

Las secuencias geométricas se utilizan comúnmente para explicar conceptos en matemáticas, física, ingeniería, biología, economía, informática, finanzas y más, lo que las convierte en una herramienta muy útil para tener en nuestras cajas de herramientas. Una de las aplicaciones más comunes de las secuencias geométricas, por ejemplo, es el cálculo de interés compuesto ganado o no pagado, una actividad más comúnmente asociada con las finanzas que podría significar ganar o perder mucho dinero! Otras aplicaciones incluyen, pero ciertamente no se limitan a, calcular la probabilidad, medir la radiactividad con el tiempo y diseñar edificios.

Termini e argomenti