Digita un'equazione o un problema
L'input della fotocamera non viene riconosciuto!

Soluzione - Sequenze geometriche

Il rapporto comune è: r=0,5555555555555556
r=0,5555555555555556
La somma di questa serie è: s=14
s=-14
La forma generale di questa serie è: an=90,5555555555555556n1
a_n=-9*0,5555555555555556^(n-1)
L'n-esimo termine di questa serie è: 9,5,2,777777777777778,1,54320987654321,0,8573388203017833,0,47629934461210194,0,26461074700672327,0,14700597055929074,0,0816699836440504,0,04537221313558357
-9,-5,-2,777777777777778,-1,54320987654321,-0,8573388203017833,-0,47629934461210194,-0,26461074700672327,-0,14700597055929074,-0,0816699836440504,-0,04537221313558357

Altri modi per risolvere

Sequenze geometriche

Spiegazione passo passo

1. Calcola il rapporto comune

Calcola il rapporto comune dividendo ogni termine della sequenza per il termine che lo segue:

a2a1=59=0,5555555555555556

Il rapporto comune (r) della sequenza è costante e uguale al quoziente di due termini consecutivi.
r=0,5555555555555556

2. Calcola la somma

5 passaggi aggiuntivi

sn=a*((1-rn)/(1-r))

Per calcolare la somma della serie, inserisci il primo termine: a=9, il rapporto comune: r=0,5555555555555556, e il numero di elementi n=2 nella formula della somma della serie geometrica:

s2=-9*((1-0,55555555555555562)/(1-0,5555555555555556))

s2=-9*((1-0,308641975308642)/(1-0,5555555555555556))

s2=-9*(0,691358024691358/(1-0,5555555555555556))

s2=-9*(0,691358024691358/0,4444444444444444)

s2=91,5555555555555556

s2=14

3. Calcola la forma generale

an=arn1

Per calcolare la forma generale della serie, inserisci il primo termine: a=9 e il rapporto comune: r=0,5555555555555556 nella formula per le serie geometriche:

an=90,5555555555555556n1

4. Calcola l'n-esimo termine

Usa la forma generale per calcolare l'n-esimo termine

a1=9

a2=a1·rn1=90,555555555555555621=90,55555555555555561=90,5555555555555556=5

a3=a1·rn1=90,555555555555555631=90,55555555555555562=90,308641975308642=2,777777777777778

a4=a1·rn1=90,555555555555555641=90,55555555555555563=90,1714677640603567=1,54320987654321

a5=a1·rn1=90,555555555555555651=90,55555555555555564=90,09525986892242037=0,8573388203017833

a6=a1·rn1=90,555555555555555661=90,55555555555555565=90,05292214940134466=0,47629934461210194

a7=a1·rn1=90,555555555555555671=90,55555555555555566=90,029401194111858143=0,26461074700672327

a8=a1·rn1=90,555555555555555681=90,55555555555555567=90,01633399672881008=0,14700597055929074

a9=a1·rn1=90,555555555555555691=90,55555555555555568=90,009074442627116711=0,0816699836440504

a10=a1·rn1=90,5555555555555556101=90,55555555555555569=90,005041357015064841=0,04537221313558357

Perché imparare questo

Las secuencias geométricas se utilizan comúnmente para explicar conceptos en matemáticas, física, ingeniería, biología, economía, informática, finanzas y más, lo que las convierte en una herramienta muy útil para tener en nuestras cajas de herramientas. Una de las aplicaciones más comunes de las secuencias geométricas, por ejemplo, es el cálculo de interés compuesto ganado o no pagado, una actividad más comúnmente asociada con las finanzas que podría significar ganar o perder mucho dinero! Otras aplicaciones incluyen, pero ciertamente no se limitan a, calcular la probabilidad, medir la radiactividad con el tiempo y diseñar edificios.

Termini e argomenti