Digita un'equazione o un problema
L'input della fotocamera non viene riconosciuto!

Soluzione - Equazioni di valore assoluto

Exakte Form: x=13,-311
x=13 , -\frac{3}{11}
Dezimalform: x=13,0.273
x=13 , -0.273

Altri modi per risolvere

Equazioni di valore assoluto

Spiegazione passo passo

1. Schreiben Sie die Gleichung ohne Absolutwertstriche um

Utiliza las reglas:
|x|=|y|x=±y y |x|=|y|±x=y
para escribir todas las cuatro opciones de la ecuación
|6x5|=|5x+8|
sin las barras de valor absoluto:

|x|=|y||6x5|=|5x+8|
x=+y(6x5)=(5x+8)
x=y(6x5)=(5x+8)
+x=y(6x5)=(5x+8)
x=y(6x5)=(5x+8)

Quando semplificate, le equazioni x=+y e +x=y sono le stesse e le equazioni x=y e x=y sono le stesse, quindi finiamo con solo 2 equazioni:

|x|=|y||6x5|=|5x+8|
x=+y , +x=y(6x5)=(5x+8)
x=y , x=y(6x5)=(5x+8)

2. Lösen Sie die beiden Gleichungen für x

7 passaggi aggiuntivi

(6x-5)=(5x+8)

Sottrai da entrambi i lati:

(6x-5)-5x=(5x+8)-5x

Raggruppa termini simili:

(6x-5x)-5=(5x+8)-5x

Semplifica il calcolo aritmetico:

x-5=(5x+8)-5x

Raggruppa termini simili:

x-5=(5x-5x)+8

Semplifica il calcolo aritmetico:

x5=8

Aggiungi a entrambi i lati:

(x-5)+5=8+5

Semplifica il calcolo aritmetico:

x=8+5

Semplifica il calcolo aritmetico:

x=13

10 passaggi aggiuntivi

(6x-5)=-(5x+8)

Espandi le parentesi:

(6x-5)=-5x-8

Aggiungi a entrambi i lati:

(6x-5)+5x=(-5x-8)+5x

Raggruppa termini simili:

(6x+5x)-5=(-5x-8)+5x

Semplifica il calcolo aritmetico:

11x-5=(-5x-8)+5x

Raggruppa termini simili:

11x-5=(-5x+5x)-8

Semplifica il calcolo aritmetico:

11x5=8

Aggiungi a entrambi i lati:

(11x-5)+5=-8+5

Semplifica il calcolo aritmetico:

11x=8+5

Semplifica il calcolo aritmetico:

11x=3

Dividi entrambi i lati per :

(11x)11=-311

Semplifica la frazione:

x=-311

3. Listen Sie die Lösungen auf

x=13,-311
(2 solution(s))

4. Graf

Each line represents the function of one side of the equation:
y=|6x5|
y=|5x+8|
The equation is true where the two lines cross.

Perché imparare questo

Nos encontramos con valores absolutos casi a diario. Por ejemplo: Si caminas 3 millas a la escuela, ¿también caminas menos 3 millas cuando regresas a casa? La respuesta es no porque las distancias usan el valor absoluto. El valor absoluto de la distancia entre la casa y la escuela es 3 millas, ya sea ida o vuelta.
En resumen, los valores absolutos nos ayudan a lidiar con conceptos como distancia, rangos de posibles valores y desviación desde un valor establecido.