方程式を入力してください
カメラ入力が識別されません!

解答 - 幾何学的な数列

共通比数は次のようになります: r=2.3333333333333335
r=2.3333333333333335
この級数の和は次のようになります: s=20
s=-20
この級数の一般形は次のようになります: an=62.3333333333333335n1
a_n=-6*2.3333333333333335^(n-1)
この級数のn番目の項は次のようになります: 6,14,32.66666666666667,76.22222222222223,177.8518518518519,414.9876543209878,968.3045267489715,2259.377229080934,5271.880201188846,12301.053802773973
-6,-14,-32.66666666666667,-76.22222222222223,-177.8518518518519,-414.9876543209878,-968.3045267489715,-2259.377229080934,-5271.880201188846,-12301.053802773973

他の解決方法

幾何学的な数列

手順を追って説明

1. 共通比数を求める

数列の任意の項を、それより一つ前の項で割ることによって共通比数を求めます:

a2a1=146=2.3333333333333335

数列の共通比数(r)は一定で、2つの連続する項の商と等しい。
r=2.3333333333333335

2. 和を見つける

5追加のsteps

sn=a*((1-rn)/(1-r))

級数の和を求めるために、初項: a=6、共通比数: r=2.3333333333333335、そして要素の数 n=2 を等比級数和の数式に代入します。

s2=-6*((1-2.33333333333333352)/(1-2.3333333333333335))

s2=-6*((1-5.4444444444444455)/(1-2.3333333333333335))

s2=-6*(-4.4444444444444455/(1-2.3333333333333335))

s2=-6*(-4.4444444444444455/-1.3333333333333335)

s2=63.333333333333334

s2=20.000000000000004

3. 一般形を見つける

an=arn1

等比級数の一般形を求めるために、初項: a=6 と共通比数: r=2.3333333333333335 を数式に代入します。

an=62.3333333333333335n1

4. n番目の項を見つける

一般形を使用してn番目の項を見つけます

a1=6

a2=a1·rn1=62.333333333333333521=62.33333333333333351=62.3333333333333335=14

a3=a1·rn1=62.333333333333333531=62.33333333333333352=65.4444444444444455=32.66666666666667

a4=a1·rn1=62.333333333333333541=62.33333333333333353=612.703703703703706=76.22222222222223

a5=a1·rn1=62.333333333333333551=62.33333333333333354=629.64197530864198=177.8518518518519

a6=a1·rn1=62.333333333333333561=62.33333333333333355=669.16460905349797=414.9876543209878

a7=a1·rn1=62.333333333333333571=62.33333333333333356=6161.38408779149526=968.3045267489715

a8=a1·rn1=62.333333333333333581=62.33333333333333357=6376.562871513489=2259.377229080934

a9=a1·rn1=62.333333333333333591=62.33333333333333358=6878.6467001981409=5271.880201188846

a10=a1·rn1=62.3333333333333335101=62.33333333333333359=62050.175633795662=12301.053802773973

なぜこれを学ぶのか

幾何数列は数学、物理学、工学、生物学、経済学、コンピューターサイエンス、財務など、多岐にわたる概念を説明するためによく使われます。したがって、これは私たちのツールキットにとって非常に便利なツールとなります。幾何数列の最も一般的な使い方の一つは、複利が加算されたり未払いになったりする金額を計算することで、これは財務と最も直接的に関連しており、大量のお金を稼いだり失ったりする可能性があります!他の応用例には、確率の計算、時間経過による放射能の測定、建築物の設計などがありますが、これらは決して全てではありません。

用語とトピック