方程式を入力してください
カメラ入力が識別されません!

解答 - 幾何学的な数列

共通比数は次のようになります: r=1.3333333333333333
r=-1.3333333333333333
この級数の和は次のようになります: s=1
s=-1
この級数の一般形は次のようになります: an=31.3333333333333333n1
a_n=3*-1.3333333333333333^(n-1)
この級数のn番目の項は次のようになります: 3,4,5.333333333333333,7.111111111111109,9.48148148148148,12.641975308641971,16.855967078189295,22.47462277091906,29.96616369455874,39.95488492607832
3,-4,5.333333333333333,-7.111111111111109,9.48148148148148,-12.641975308641971,16.855967078189295,-22.47462277091906,29.96616369455874,-39.95488492607832

他の解決方法

幾何学的な数列

手順を追って説明

1. 共通比数を求める

数列の任意の項を、それより一つ前の項で割ることによって共通比数を求めます:

a2a1=43=1.3333333333333333

数列の共通比数(r)は一定で、2つの連続する項の商と等しい。
r=1.3333333333333333

2. 和を見つける

5追加のsteps

sn=a*((1-rn)/(1-r))

級数の和を求めるために、初項: a=3、共通比数: r=1.3333333333333333、そして要素の数 n=2 を等比級数和の数式に代入します。

s2=3*((1--1.33333333333333332)/(1--1.3333333333333333))

s2=3*((1-1.7777777777777777)/(1--1.3333333333333333))

s2=3*(-0.7777777777777777/(1--1.3333333333333333))

s2=3*(-0.7777777777777777/2.333333333333333)

s2=30.3333333333333333

s2=1

3. 一般形を見つける

an=arn1

等比級数の一般形を求めるために、初項: a=3 と共通比数: r=1.3333333333333333 を数式に代入します。

an=31.3333333333333333n1

4. n番目の項を見つける

一般形を使用してn番目の項を見つけます

a1=3

a2=a1·rn1=31.333333333333333321=31.33333333333333331=31.3333333333333333=4

a3=a1·rn1=31.333333333333333331=31.33333333333333332=31.7777777777777777=5.333333333333333

a4=a1·rn1=31.333333333333333341=31.33333333333333333=32.37037037037037=7.111111111111109

a5=a1·rn1=31.333333333333333351=31.33333333333333334=33.160493827160493=9.48148148148148

a6=a1·rn1=31.333333333333333361=31.33333333333333335=34.213991769547324=12.641975308641971

a7=a1·rn1=31.333333333333333371=31.33333333333333336=35.618655692729765=16.855967078189295

a8=a1·rn1=31.333333333333333381=31.33333333333333337=37.491540923639686=22.47462277091906

a9=a1·rn1=31.333333333333333391=31.33333333333333338=39.98872123151958=29.96616369455874

a10=a1·rn1=31.3333333333333333101=31.33333333333333339=313.318294975359441=39.95488492607832

なぜこれを学ぶのか

幾何数列は数学、物理学、工学、生物学、経済学、コンピューターサイエンス、財務など、多岐にわたる概念を説明するためによく使われます。したがって、これは私たちのツールキットにとって非常に便利なツールとなります。幾何数列の最も一般的な使い方の一つは、複利が加算されたり未払いになったりする金額を計算することで、これは財務と最も直接的に関連しており、大量のお金を稼いだり失ったりする可能性があります!他の応用例には、確率の計算、時間経過による放射能の測定、建築物の設計などがありますが、これらは決して全てではありません。

用語とトピック