方程式を入力してください
カメラ入力が識別されません!

解答 - 幾何学的な数列

共通比数は次のようになります: r=1.1666666666666667
r=-1.1666666666666667
この級数の和は次のようになります: s=1
s=-1
この級数の一般形は次のようになります: an=61.1666666666666667n1
a_n=6*-1.1666666666666667^(n-1)
この級数のn番目の項は次のようになります: 6,7,8.166666666666668,9.527777777777779,11.115740740740744,12.96836419753087,15.12975823045268,17.651384602194796,20.593282035893928,24.025495708542916
6,-7,8.166666666666668,-9.527777777777779,11.115740740740744,-12.96836419753087,15.12975823045268,-17.651384602194796,20.593282035893928,-24.025495708542916

他の解決方法

幾何学的な数列

手順を追って説明

1. 共通比数を求める

数列の任意の項を、それより一つ前の項で割ることによって共通比数を求めます:

a2a1=76=1.1666666666666667

数列の共通比数(r)は一定で、2つの連続する項の商と等しい。
r=1.1666666666666667

2. 和を見つける

5追加のsteps

sn=a*((1-rn)/(1-r))

級数の和を求めるために、初項: a=6、共通比数: r=1.1666666666666667、そして要素の数 n=2 を等比級数和の数式に代入します。

s2=6*((1--1.16666666666666672)/(1--1.1666666666666667))

s2=6*((1-1.3611111111111114)/(1--1.1666666666666667))

s2=6*(-0.3611111111111114/(1--1.1666666666666667))

s2=6*(-0.3611111111111114/2.166666666666667)

s2=60.16666666666666677

s2=1.0000000000000007

3. 一般形を見つける

an=arn1

等比級数の一般形を求めるために、初項: a=6 と共通比数: r=1.1666666666666667 を数式に代入します。

an=61.1666666666666667n1

4. n番目の項を見つける

一般形を使用してn番目の項を見つけます

a1=6

a2=a1·rn1=61.166666666666666721=61.16666666666666671=61.1666666666666667=7

a3=a1·rn1=61.166666666666666731=61.16666666666666672=61.3611111111111114=8.166666666666668

a4=a1·rn1=61.166666666666666741=61.16666666666666673=61.5879629629629632=9.527777777777779

a5=a1·rn1=61.166666666666666751=61.16666666666666674=61.8526234567901239=11.115740740740744

a6=a1·rn1=61.166666666666666761=61.16666666666666675=62.1613940329218115=12.96836419753087

a7=a1·rn1=61.166666666666666771=61.16666666666666676=62.5216263717421135=15.12975823045268

a8=a1·rn1=61.166666666666666781=61.16666666666666677=62.9418974336991326=17.651384602194796

a9=a1·rn1=61.166666666666666791=61.16666666666666678=63.432213672648988=20.593282035893928

a10=a1·rn1=61.1666666666666667101=61.16666666666666679=64.004249284757153=24.025495708542916

なぜこれを学ぶのか

幾何数列は数学、物理学、工学、生物学、経済学、コンピューターサイエンス、財務など、多岐にわたる概念を説明するためによく使われます。したがって、これは私たちのツールキットにとって非常に便利なツールとなります。幾何数列の最も一般的な使い方の一つは、複利が加算されたり未払いになったりする金額を計算することで、これは財務と最も直接的に関連しており、大量のお金を稼いだり失ったりする可能性があります!他の応用例には、確率の計算、時間経過による放射能の測定、建築物の設計などがありますが、これらは決して全てではありません。

用語とトピック