समीकरण किंवा समस्या प्रविष्ट करा
कॅमेरा इनपुट ओळखला जात नाही!

सोल्यूशन - भूमितीय अनुक्रम

सामान्य अनुपात म्हणजे: r=0.5555555555555556
r=0.5555555555555556
या मालिकेचें योग असेल: s=14
s=-14
या मालिकेचा सामान्य रूप असेल: an=90.5555555555555556n1
a_n=-9*0.5555555555555556^(n-1)
या सिल्सिलेचा nth पद असेल: 9,5,2.777777777777778,1.54320987654321,0.8573388203017833,0.47629934461210194,0.26461074700672327,0.14700597055929074,0.0816699836440504,0.04537221313558357
-9,-5,-2.777777777777778,-1.54320987654321,-0.8573388203017833,-0.47629934461210194,-0.26461074700672327,-0.14700597055929074,-0.0816699836440504,-0.04537221313558357

निराकरण करण्याचे इतर मार्ग

भूमितीय अनुक्रम

पायरी-पायरी समाधान

1. सामान्य अनुपात शोधा

अनुक्रमणीतील कोणतीही मुद्रा त्याच्या पूर्वीच्या मुद्रेच्या भाग करुन सामान्य अनुपात शोधा:

a2a1=59=0.5555555555555556

अनुक्रमणीचा सामान्य अनुपात (r) स्थिर असे आहे आणि तो एका पुढील व त्याच्या पूर्वीच्या पदांच्या भागाचे बरोबर असे.
r=0.5555555555555556

2. योग शोधा

5 अतिरिक्त steps

sn=a*((1-rn)/(1-r))

मालिकेची संख्या शोधण्यासाठी, पहिला मूळभूत: a=9, सामान्य अनुपात: r=0.5555555555555556, और पदांची संख्या n=2 या भूतगणितीय मालिकेच्या संख्यासूत्रात ठेवा:

s2=-9*((1-0.55555555555555562)/(1-0.5555555555555556))

s2=-9*((1-0.308641975308642)/(1-0.5555555555555556))

s2=-9*(0.691358024691358/(1-0.5555555555555556))

s2=-9*(0.691358024691358/0.4444444444444444)

s2=91.5555555555555556

s2=14

3. सामान्य रूप शोधा

an=arn1

मालिकेचा सामान्य रूप कसा असेल हे शोधण्यासाठी, पहिला मूळभूत: a=9 आणि सामान्य अनुपात: r=0.5555555555555556 या भूतगणितीय मालिकेच्या सूत्रात ठेवा:

an=90.5555555555555556n1

4. n वा पद शोधा

सामान्य रूपाचा वापर करून नथी पद शोधा

a1=9

a2=a1·rn1=90.555555555555555621=90.55555555555555561=90.5555555555555556=5

a3=a1·rn1=90.555555555555555631=90.55555555555555562=90.308641975308642=2.777777777777778

a4=a1·rn1=90.555555555555555641=90.55555555555555563=90.1714677640603567=1.54320987654321

a5=a1·rn1=90.555555555555555651=90.55555555555555564=90.09525986892242037=0.8573388203017833

a6=a1·rn1=90.555555555555555661=90.55555555555555565=90.05292214940134466=0.47629934461210194

a7=a1·rn1=90.555555555555555671=90.55555555555555566=90.029401194111858143=0.26461074700672327

a8=a1·rn1=90.555555555555555681=90.55555555555555567=90.01633399672881008=0.14700597055929074

a9=a1·rn1=90.555555555555555691=90.55555555555555568=90.009074442627116711=0.0816699836440504

a10=a1·rn1=90.5555555555555556101=90.55555555555555569=90.005041357015064841=0.04537221313558357

हे शिकायला का?

गणित, भौतिकशास्त्र, अभियांत्रिकी, जीवशास्त्र, अर्थशास्त्र, संगणकविज्ञान, वित्त, आणि अधिक मध्ये संकल्पनांची स्पष्टीकरण करण्यासाठी सामान्यतः गुणगुंतीता अनुक्रम प्रयोग केली जाते. गणगुंतीता अनुक्रमाला आपल्या उपकरणधारित पेटीमध्ये एक अत्यंत उपयोगी साधन म्हणून ठरविण्यात येते. उदाहरणार्थ, जितके घिम्मे उघडली किंवा आनहूत ब्याज मोजण्याची गतिविधी ह्या अनुमाणानुसार वित्त संबंधी निवडलेल्या गतिविधींमध्ये एक म्हणजे पैसे कमवणे किंवा खूप सारणारे पैसे! इतर अनुप्रयोग वेळेच्या दरामुळे विकिरणाचे मापन करणारयांना, एका इमारतीचं डिझाइन करणारयांना, परंतु त्यांनी निश्चितपणे नाही की ते संधारण करतात.

अर्थ आणि विषय