समीकरण किंवा समस्या प्रविष्ट करा
कॅमेरा इनपुट ओळखला जात नाही!

सोल्यूशन - घटकीकरणाद्वारे द्विघात समीकरणे सोडवा

अपरिवर्तनिय रूप: w1=-9,w2=132
w_1=-9, w_2=\frac{13}{2}
दशांश रूप: w1=9,w2=6.5
w_1=-9, w_2=6.5
घटकांमध्ये समीकरण: (w+9)(2w13)=0
(w+9)(2w-13)=0

पायरी-पायरी समाधान

हे शिकायला का?

त्यांच्या सर्वांत मूलभूत कामे, द्वि२्यांची समीकरणे वृत्ताकार, दीर्घवृत्ताकार आणि प्रक्षेपांचे आकार वर्णन करतात. या आकारांची मदतीने म्हणजेच एका फुटबॉल खेळाडूने लात मारलेल्या बॉलच्या वा कॅननमधून गोळीबांधण्याच्या प्रक्रियेच्या वक्रतेचि अंदाजे घेतली जाऊ शकते.
जेव्हा वस्त्रांचे चालण येथे येते, तेव्हा अवकाशातील स्वतःच्या विशाल, आपल्या सौरयप्रणाळीतील ग्रहाच्या वर्तणानुसार कुणीही सुरुवात करावी, का नाही? द्विघात समीकरणाने ग्रहांची निवाड केली असलेल्या मार्गांचे दीर्घवृत्ताकार, फेरीच्या नाहीत. त्याच बरोबर वाहनाची वेगवानी किती आहे हे पुढे जाऊन द्विघात समीकरणाद्वारे किंवा यासारख्या गोष्टी केलेल्या गोळाबांधणार्या वाहनाच्या वेगवानीत सुद्धा मोजली जाऊ शकते. असे माहितीसह ऑटोमोबाईल उद्योग भविष्यातील प्रक्षेपणांना टळवायला ब्रेक्स डिझाइन करू शकतो. अनेक उद्योग द्विघात समीकरणाच्या मदतीने त्यांच्या उत्पादनाची आयुष्यवृत्ती आणि सुरक्षा अंदाजने वाढवतात.