समीकरण किंवा समस्या प्रविष्ट करा
कॅमेरा इनपुट ओळखला जात नाही!

सोल्यूशन - चौरसांकी समीकरणे पूर्ण वर्गाच्या माध्यमातून सोडवणे

निश्चित रूप: n1=-52+22252
n_1=-\frac{5}{2}+\frac{\sqrt{2225}}{2}
n2=-52-22252
n_2=-\frac{5}{2}-\frac{\sqrt{2225}}{2}
दशमलव स्वरूप: n1=21.085
n_1=21.085
n2=26.085
n_2=-26.085

पायरी-पायरी समाधान

हे शिकायला का?

त्यांच्या सर्वात मूळ वापरात, चक्रीय समीकरणांनी वर्तुळ, दीर्घवृत्त आणि परावलय अशा आकारांची व्याख्या केली आहे. यांच्या मदतीने बॉल खेळाडूने किंवा तोप बाहेर पटकून असलेल्या वस्त्राच्या वाक्रेपणाची अपेक्षा केली जाऊ शकते.
जगतिकाच्या विक्रमाच्या प्रस्थापनाच्या स्थळाच्या विषयी चर्चा करताना, का आपली सूर्यमंडळातील ग्रहांच्या क्रांतीच्या जागा पाहू नका? चक्रीय समीकरणांचा उपयोग हे स्थापित करण्यासाठी केला आहे की ग्रहांची क्रांती वर्तुळाकार नाही. जगतिकाला दिलेला मार्ग आणि वेग हे निश्चित करणे त्यानंतरही शक्य आहे: चक्रीय समीकरण मोठ्या वाहनाच्या वेगाची गणना करू शकतो जेव्हा ते अपघाताबद्दल विचारले जाते. अशी माहिती असल्याने, वाहन उद्योग भविष्यातील संघर्षांनी टळवण्यासाठी ब्रेक डिझाईन करू शकते. अनेक उद्योग चक्रीय समीकरणाचा उपयोग करून त्यांच्या उत्पादनाची आयुष्यावधी आणि सुरक्षा अपेक्षितच्या अधिक प्रकारे सुधारवू शकतात.