Solution - Simplification or other simple results
Other Ways to Solve:
Step by Step Solution
Step 1 :
Equation at the end of step 1 :
  (22x2 +  12x) +  9
Step 2 :
Trying to factor by splitting the middle term
 2.1     Factoring  4x2+12x+9 
 The first term is,  4x2  its coefficient is  4 .
The middle term is,  +12x  its coefficient is  12 .
The last term, "the constant", is  +9 
Step-1 : Multiply the coefficient of the first term by the constant   4 • 9 = 36 
Step-2 : Find two factors of  36  whose sum equals the coefficient of the middle term, which is   12 .
| -36 | + | -1 | = | -37 | ||
| -18 | + | -2 | = | -20 | ||
| -12 | + | -3 | = | -15 | ||
| -9 | + | -4 | = | -13 | ||
| -6 | + | -6 | = | -12 | ||
| -4 | + | -9 | = | -13 | ||
| -3 | + | -12 | = | -15 | ||
| -2 | + | -18 | = | -20 | ||
| -1 | + | -36 | = | -37 | ||
| 1 | + | 36 | = | 37 | ||
| 2 | + | 18 | = | 20 | ||
| 3 | + | 12 | = | 15 | ||
| 4 | + | 9 | = | 13 | ||
| 6 | + | 6 | = | 12 | That's it | 
Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  6  and  6 
                     4x2 + 6x + 6x + 9
Step-4 : Add up the first 2 terms, pulling out like factors :
                    2x • (2x+3)
              Add up the last 2 terms, pulling out common factors :
                    3 • (2x+3)
 Step-5 : Add up the four terms of step 4 :
                    (2x+3)  •  (2x+3)
             Which is the desired factorization
Multiplying Exponential Expressions :
 2.2    Multiply  (2x+3)  by  (2x+3) 
The rule says : To multiply exponential expressions which have the same base, add up their exponents.
In our case, the common base is  (2x+3)  and the exponents are :
          1 , as  (2x+3)  is the same number as  (2x+3)1 
 and   1 , as  (2x+3)  is the same number as  (2x+3)1 
The product is therefore,  (2x+3)(1+1) = (2x+3)2 
Final result :
  (2x + 3)2
How did we do?
Please leave us feedback.