Enter an equation or problem
Camera input is not recognized!

Solution - Geometric Sequences

The common ratio is: r=25.666666666666668
r=25.666666666666668
The sum of this series is: s=80
s=-80
The general form of this series is: an=325.666666666666668n1
a_n=-3*25.666666666666668^(n-1)
The nth term of this series is: 3,77,1976.3333333333335,50725.88888888889,1301964.4814814818,33417088.358024698,857705267.8559673,22014435208.30316,565037170346.4479,14502620705558.83
-3,-77,-1976.3333333333335,-50725.88888888889,-1301964.4814814818,-33417088.358024698,-857705267.8559673,-22014435208.30316,-565037170346.4479,-14502620705558.83

Other Ways to Solve

Geometric Sequences

Step-by-step explanation

1. Find the common ratio

Find the common ratio by dividing any term in the sequence by the term that comes before it:

a2a1=773=25.666666666666668

The common ratio (r) of the sequence is constant and equals the quotient of two consecutive terms.
r=25.666666666666668

2. Find the sum

5 additional steps

sn=a*((1-rn)/(1-r))

To find the sum of the series, plug the first term: a=-3, the common ratio: r=25.666666666666668, and the number of elements n=2 into the geometric series sum formula:

s2=-3*((1-25.6666666666666682)/(1-25.666666666666668))

s2=-3*((1-658.7777777777778)/(1-25.666666666666668))

s2=-3*(-657.7777777777778/(1-25.666666666666668))

s2=-3*(-657.7777777777778/-24.666666666666668)

s2=326.666666666666668

s2=80

3. Find the general form

an=arn1

To find the general form of the series, plug the first term: a=3 and the common ratio: r=25.666666666666668 into the formula for geometric series:

an=325.666666666666668n1

4. Find the nth term

Use the general form to find the nth term

a1=3

a2=a1·rn1=325.66666666666666821=325.6666666666666681=325.666666666666668=77

a3=a1·rn1=325.66666666666666831=325.6666666666666682=3658.7777777777778=1976.3333333333335

a4=a1·rn1=325.66666666666666841=325.6666666666666683=316908.62962962963=50725.88888888889

a5=a1·rn1=325.66666666666666851=325.6666666666666684=3433988.16049382725=1301964.4814814818

a6=a1·rn1=325.66666666666666861=325.6666666666666685=311139029.4526749=33417088.358024698

a7=a1·rn1=325.66666666666666871=325.6666666666666686=3285901755.9519891=857705267.8559673

a8=a1·rn1=325.66666666666666881=325.6666666666666687=37338145069.434387=22014435208.30316

a9=a1·rn1=325.66666666666666891=325.6666666666666688=3188345723448.81595=565037170346.4479

a10=a1·rn1=325.666666666666668101=325.6666666666666689=34834206901852.943=14502620705558.83

Why learn this

Geometric sequences are commonly used to explain concepts in mathematics, physics, engineering, biology, economics, computer science, finance, and more, making them a very useful tool to have in our toolkits. One of the most common applications of geometric sequences, for example, is calculating earned or unpaid compound interest, an activity most commonly associated with finance that could mean earning or losing a lot of money! Other applications include, but are certainly not limited to, calculating probability, measuring radioactivity over time, and designing buildings.

Terms and topics