Enter an equation or problem
Camera input is not recognized!

Solution - Absolute value equations

Exact form: t=-758,22523
t=-\frac{75}{8} , \frac{225}{23}
Mixed number form: t=-938,91823
t=-9\frac{3}{8} , 9\frac{18}{23}
Decimal form: t=9.375,9.783
t=-9.375 , 9.783

Other Ways to Solve

Absolute value equations

Step-by-step explanation

1. Rewrite the equation without absolute value bars

Use the rules:
|x|=|y|x=±y and |x|=|y|±x=y
to write all four options of the equation
|-5t+100|=|-313t+50|
without the absolute value bars:

|x|=|y||-5t+100|=|-313t+50|
x=+y(-5t+100)=(-313t+50)
x=-y(-5t+100)=-(-313t+50)
+x=y(-5t+100)=(-313t+50)
-x=y-(-5t+100)=(-313t+50)

When simplified, equations x=+y and +x=y are the same and equations x=y and x=y are the same, so we end up with only 2 equations:

|x|=|y||-5t+100|=|-313t+50|
x=+y , +x=y(-5t+100)=(-313t+50)
x=-y , -x=y(-5t+100)=-(-313t+50)

2. Solve the two equations for t

19 additional steps

(-5t+100)=(-313t+50)

Add to both sides:

(-5t+100)+313·t=(-313t+50)+313t

Group like terms:

(-5t+313·t)+100=(-313·t+50)+313t

Group the coefficients:

(-5+313)t+100=(-313·t+50)+313t

Convert the integer into a fraction:

(-153+313)t+100=(-313·t+50)+313t

Combine the fractions:

(-15+31)3·t+100=(-313·t+50)+313t

Combine the numerators:

163·t+100=(-313·t+50)+313t

Group like terms:

163·t+100=(-313·t+313t)+50

Combine the fractions:

163·t+100=(-31+31)3t+50

Combine the numerators:

163·t+100=03t+50

Reduce the zero numerator:

163t+100=0t+50

Simplify the arithmetic:

163t+100=50

Subtract from both sides:

(163t+100)-100=50-100

Simplify the arithmetic:

163t=50-100

Simplify the arithmetic:

163t=-50

Multiply both sides by inverse fraction :

(163t)·316=-50·316

Group like terms:

(163·316)t=-50·316

Multiply the coefficients:

(16·3)(3·16)t=-50·316

Simplify the fraction:

t=-50·316

Multiply the fraction(s):

t=(-50·3)16

Simplify the arithmetic:

t=-758

23 additional steps

(-5t+100)=-(-313t+50)

Expand the parentheses:

(-5t+100)=313t-50

Subtract from both sides:

(-5t+100)-313·t=(313t-50)-313t

Group like terms:

(-5t+-313·t)+100=(313·t-50)-313t

Group the coefficients:

(-5+-313)t+100=(313·t-50)-313t

Convert the integer into a fraction:

(-153+-313)t+100=(313·t-50)-313t

Combine the fractions:

(-15-31)3·t+100=(313·t-50)-313t

Combine the numerators:

-463·t+100=(313·t-50)-313t

Group like terms:

-463·t+100=(313·t+-313t)-50

Combine the fractions:

-463·t+100=(31-31)3t-50

Combine the numerators:

-463·t+100=03t-50

Reduce the zero numerator:

-463t+100=0t-50

Simplify the arithmetic:

-463t+100=-50

Subtract from both sides:

(-463t+100)-100=-50-100

Simplify the arithmetic:

-463t=-50-100

Simplify the arithmetic:

-463t=-150

Multiply both sides by inverse fraction :

(-463t)·3-46=-150·3-46

Move the negative sign from the denominator to the numerator:

-463t·-346=-150·3-46

Group like terms:

(-463·-346)t=-150·3-46

Multiply the coefficients:

(-46·-3)(3·46)t=-150·3-46

Simplify the arithmetic:

1t=-150·3-46

t=-150·3-46

Move the negative sign from the denominator to the numerator:

t=-150·-346

Multiply the fraction(s):

t=(-150·-3)46

Simplify the arithmetic:

t=22523

3. List the solutions

t=-758,22523
(2 solution(s))

4. Graph

Each line represents the function of one side of the equation:
y=|-5t+100|
y=|-313t+50|
The equation is true where the two lines cross.

Why learn this

We encounter absolute values almost daily. For example: If you walk 3 miles to school, do you also walk minus 3 miles when you go back home? The answer is no because distances use absolute value. The absolute value of the distance between home and school is 3 miles, there or back.
In short, absolute values help us deal with concepts like distance, ranges of possible values, and deviation from a set value.