ਇਕ ਸਮੀਕਰਨ ਜਾਂ ਸਮੱਸਿਆ ਦਰਜ ਕਰੋ
ਕੈਮਰਾ ਇਨਪੁਟ ਪਛਾਣਿਆ ਨਹੀਂ ਜਾ ਸਕਿਆ!

ਹੱਲ - ਫੈਕਟਰਿੰਗ ਦੁਆਰਾ ਕ੍ਵਾਡ੍ਰੈਟਿਕ ਸਮੀਕਰਣਾਂ ਨੂੰ ਹੱਲ ਕਰਨਾ

ਠੀਕ ਫਾਰਮ: x1=6.255,x2=5.755
x_1=-6.255, x_2=5.755
ਦਸਮਲਵ ਔਪਚਾਰ: x1=6.255,x2=5.755
x_1=-6.255, x_2=5.755
ਫੈਕਟਰ ਰੂਪ ਵਿੱਚ ਸਮੀਕਰਣ: 0(x+6)(x6)=0
0(x+6)(x-6)=0

ਕਦਮ-ਬਾ-ਕਦਮ ਸਮਝਾਉਣਾ

ਇਸ ਨੂੰ ਕਿਉਂ ਸਿੱਖਣਾ ਹੈ

ਉਨ੍ਹਾਂ ਦੇ ਸਭ ਤੋਂ ਮੂਲ ਕਾਰਜਾਂ ਵਿੱਚ, ਕ੍ਵਾਡ੍ਰੈਟਿਕ ਸਮੀਕਰਣ ਗੜੇਬੱਲਾਂ ਦੇ ਰੂਪ ਨੂੰ ਪਰਿਭਾਸ਼ਤ ਕਰਦੇ ਹਨ, ਜੋ ਇੱਕ ਫੁਟਬਾਲ ਖਿਡਾਰੀ ਦੁਆਰਾ ਚੱਟੀ ਗਈ ਗੇਂਦ ਜਾਂ ਕੈਨਨ ਮਾਰੀ ਗੋਲੀ ਦੀ ਪਟਾਈ ਨੂੰ ਭਵਿੱਖ ਵਿੱਚ ਪ੍ਰਕਾਸ਼ਿਤ ਕਰਨ ਲਈ ਵਰਤੇ ਜਾ ਸਕਦੇ ਹਨ। ਇਸ ਬਰੇ ਕੁਝ ਸੋਚਣ ਨਾਲ ਬਹੁਤ ਵਧੀਆ ਜਗ੍ਹਾ ਹੁੰਦੀ ਹੈ ਜਾਂ ਖੁਦੇ ਸਪੇਸ ਵਿੱਚ, ਜਦੋਂ ਸਾਡਾ ਸੋਰਾਜ ਸਿਸਟਮ ਵਿੱਚ ਗ੍ਰਹਿਆਂ ਦਾ ਘੂਮਣਾ ਹੋਂਦਾ ਹੈ? ਕ੍ਵਾਡ੍ਰੈਟਿਕ ਸਮੀਕਰਣ ਨੇ ਯਹ ਸਥਾਪਿਤ ਕਰਨ ਲਈ ਵਰਤੋਂ ਕੀਤੀ ਜਾਂਦੀ ਹੈ ਕਿ ਗ੍ਰਹਿਆਂ ਦੇ orbit ਨੇ ਚਕਰਵੀ, ਨਹੀਂ ਗੋਲ। ਇੱਕ ਆਈਟਮ ਦਾ ਰਾਸ਼ਟਰੀ ਅਤੇ ਵੇਗ ਦਿਸ਼ਾ ਨਿਰਧਾਰਿਤ ਕਰਨਾ ਉਸ ਦੇ ਬੇਸਬਾਰ ਹੋਣ ਤੱਕ ਸੰਭਵ ਹੈ: ਕ੍ਵਾਡ੍ਰੈਟਿਕ ਸਮੀਕਰਣ ਕਲਕੁਲੇਟ ਕਰ ਸਕਦਾ ਹੈ ਕਿ ਵਾਹਨ ਕਿੰਨੇ ਤੇਜ਼ੀ ਨਾਲ ਚੱਲ ਰਿਹਾ ਸੀ ਜਦੋਂ ਇਹ ਦੁਰਘਟਨਾ ਵਿੱਚ ਫਸਿਆ। ਇਸ ਤਰਾਂ ਦੀ ਜਾਣਕਾਰੀ ਨਾਲ, ਑ਟੋਮੋਬਾਈਲ ਉਦਯੋਗ ਭਵਿੱਖ ਵਿੱਚ ਟਕਰਾਉਣ ਤੇ ਸ਼ੱਕ ਪਾਉਣ ਲਈ ਬਰੇਕਸ ਡਿਜ਼ਾਈਨ ਕਰ ਸਕਦਾ ਹੈ। ਕੀ ਉਦਯੋਗ ਕ੍ਵਾਡ੍ਰੈਟਿਕ ਸਮੀਕਰਣ ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹਨ ਤਾਂ ਉਨ੍ਹਾਂ ਦੇ ਉਤਪਾਦਾਂ ਦੇ ਲਾਈਫਸਪੇਨ ਅਤੇ ਸੁਰੱਖਿਆ ਨੂੰ ਭਵਿੱਖ ਵਿੱਚ ਇਸ ਤਰਾਂ ਸੁਧਾਰਨ ਲਈ।