ਇਕ ਸਮੀਕਰਨ ਜਾਂ ਸਮੱਸਿਆ ਦਰਜ ਕਰੋ
ਕੈਮਰਾ ਇਨਪੁਟ ਪਛਾਣਿਆ ਨਹੀਂ ਜਾ ਸਕਿਆ!

ਹੱਲ - ਕ੍ਵੈਡ੍ਰੈਟਿਕ ਸਮੀਕਰਣ ਨੂੰ ਕ੍ਵੈਡ੍ਰੈਟਿਕ ਸੂਤਰ ਨਾਲ ਹੱਲ ਕਰਨਾ

t1=0.086
t_1=-0.086
t2=2.899
t_2=2.899

ਕਦਮ-ਬਾ-ਕਦਮ ਸਮਝਾਉਣਾ

ਇਸ ਨੂੰ ਕਿਉਂ ਸਿੱਖਣਾ ਹੈ

ਉਹਨਾਂ ਦੇ ਸਭ ਤੋਂ ਮੂਲ ਫੰਕਸ਼ਨ ਵਿੱਚ, ਕੁਆਡ੍ਰਾਟਿਕ ਸਮੀਕਰਣ ਆਕਾਰ ਦੀ ਸ਼ਕਲ ਲਈ ਮੁੱਖ ਹੁੰਦੇ ਹਨ ਜਿਵੇਂ ਗੋਲਾਕਾਰ, ਏਲੀਪਸਜ਼ ਅਤੇ ਪੈਰੇਬੋਲਾਜ਼। ਇਹਨਾਂ ਆਕਾਰਾਂ ਨੂੰ ਫੇਰ ਉਸ ਓਬਜੈਕਟ ਦੇ ਵਾਕਾਓ ਦੀ ਬਹਾਵਲਿ ਦਾ ਅਨੁਮਾਨ ਲਗਾਉਣ ਲਈ ਵਰਤਿਆ ਜਾ ਸਕਦਾ ਹੈ, ਜਿਵੇਂ ਕਿਸੇ ਫੁੱਟਬਾਲ ਖਿਡਾਰੀ ਦੁਆਰਾ ਕਿਕ ਕੀਤੀ ਗਈ ਗੇਂਦ ਜਾਂ ਤੋਪ ਦਾ ਚਲਾਓ।

ਜਦੋਂ ਏਸੇ ਗੇਂਦ ਦੇ ਆਕਾਸ਼ ਵਿੱਚ ਹਰਕਤ ਬਾਰੇ ਬਾਤ ਕੀਤੀ ਜਾਂਦੀ ਹੈ, ਤਾਂ ਸਬ ਤੋਂ ਪਹਿਲਾਂ ਆਕਾਸ਼ ਹੀ ਦੀ ਮਹਿਸੂਸ ਕਰੋ - ਸਾਡੇ ਸੌਰ ਮੰਡਲ ਵਿੱਚ ਗ੍ਰਹਿਆਂ ਦੀ ਕਰਵਾਓ। ਕੁਆਡ੍ਰਾਟਿਕ ਸਮੀਕਰਣ ਨੂੰ ਵਰਤਿਆ ਗਿਆ ਸੀ ਕਿ ਗ੍ਰਹਿਆਂ ਦੀ ਕਰਵਾਓ ਤਿਕੋਣੀ ਹੁੰਦੀ ਹੈ, ਨਾ ਕਿ ਗੋਲਾਕਾਰ। ਕਿਸੇ ਵੀ ਵਸਤੁ ਦੀ ਆਕਾਸ਼ ਵਿੱਚ ਹਰਕਤ ਦਾ ਮਾਰਗ ਅਤੇ ਗਤੀ ਅਨੁਮਾਨਿਤ ਕਰਨਾ ਸੰਭਵ ਹੈ, ਭਾਵੇਂ ਉਹ ਆਪਣੀ ਗਤੀ ਬੰਦ ਕਰ ਚੁੱਕਾ ਹੋ: ਕੁਆਡ੍ਰਾਟਿਕ ਸਮੀਕਰਣ ਅਨੁਮਾਨਿਤ ਕਰ ਸਕਦਾ ਹੈ ਕਿ ਜਦੋਂ ਕੋਈ ਵਾਹਨ ਦੁਰਘਟਨਾ ਹੁੰਦੀ ਹੈ, ਉਹ ਕਿੰਨੀ ਤੀਵ੍ਰਤਾ ਨਾਲ ਚਲ ਰਿਹਾ ਸੀ। ਇਸ ਕਿਸਮ ਦੀ ਜਾਣਕਾਰੀ ਨਾਲ, ਆਟੋਮੋਬਾਈਲ ਉਦਯੋਗ ਆਨੇ ਵਾਲੇ ਸਮੇਂ 'ਚ ਟਕਰਾਵਾਂ ਤੋਂ ਬਚਣ ਲਈ ਬ੍ਰੇਕਾਂ ਦਾ ਨਿਰਮਾਣ ਕਰ ਸਕਦਾ ਹੈ। ਬਹੁਤ ਸਾਰਿਆਂ ਉਦਯੋਗਾਂ ਨੇ ਕੁਆਡ੍ਰਾਟਿਕ ਸਮੀਕਰਣ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਆਪਣੇ ਉਤਪਾਦਾਂ ਦੀ ਜੀਵਨਾਵਧੀ ਅਤੇ ਸੁਰੱਖਿਆ ਨੂੰ ਬੇਹਤਰ ਬਣਾਉਣਾ ਹੈ।