ਇਕ ਸਮੀਕਰਨ ਜਾਂ ਸਮੱਸਿਆ ਦਰਜ ਕਰੋ
ਕੈਮਰਾ ਇਨਪੁਟ ਪਛਾਣਿਆ ਨਹੀਂ ਜਾ ਸਕਿਆ!

ਹੱਲ - Jyamiti Anukram

ਆਮ ਅਨੁਪਾਤ ਹੈ: r=1.5555555555555556
r=1.5555555555555556
ਇਸ ਸਿਰੀਜ਼ ਦਾ ਯੋਗ ਹੈ: s=23
s=-23
ਇਸ ਸਿਰੀਜ਼ ਦੀ ਆਮ ਰੂਪ ਹੈ: an=91.5555555555555556n1
a_n=-9*1.5555555555555556^(n-1)
ਇਸ ਸਿਰੀਜ਼ ਦਾ nth ਅੰਕ ਹੈ: 9,14,21.77777777777778,33.876543209876544,52.69684499314129,81.9728699893309,127.51335331673695,198.35410515936863,308.5508302479067,479.96795816341046
-9,-14,-21.77777777777778,-33.876543209876544,-52.69684499314129,-81.9728699893309,-127.51335331673695,-198.35410515936863,-308.5508302479067,-479.96795816341046

ਹੋਰ ਤਰੀਕੇ ਹੱਲ ਕਰਨ ਦੇ

Jyamiti Anukram

ਕਦਮ-ਬਾ-ਕਦਮ ਸਮਝਾਉਣਾ

1. ਆਮ ਅਨੁਪਾਤ ਲੱਭੋ

ਕਿਸੇ ਵੀ ਕ੍ਰਮ ਵਿੱਚ ਕੋਈ ਵੀ ਅੰਕ ਨੂੰ ਉਸ ਅੰਕ ਨਾਲ ਭਾਗ ਕਰਕੇ ਆਮ ਅਨੁਪਾਤ ਲੱਭੋ ਜੋ ਉਸ ਤੋਂ ਪਹਿਲਾਂ ਆਉਂਦਾ ਹੈ:

a2a1=149=1.5555555555555556

ਕ੍ਰਮ ਦੀ ਆਮ ਅਨੁਪਾਤ (r) ਸਥਿਰ ਹੁੰਦੀ ਹੈ ਅਤੇ ਦੋ ਲਗਾਤਾਰ ਮਿਆਰਾਂ ਦੇ ਭਾਗ ਨਾਲ ਬਰਾਬਰ ਹੁੰਦੀ ਹੈ।
r=1.5555555555555556

2. ਯੋਗ ਲੱਭੋ

5 ਵਾਧੂ steps

sn=a*((1-rn)/(1-r))

ਸਿਰੀਜ਼ ਦਾ ਯੋਗ ਲੱਭਣ ਲਈ, ਪਹਿਲਾ ਅੰਕ: a=9, ਆਮ ਅਨੁਪਾਤ: r=1.5555555555555556, ਅਤੇ ਤੱਤਾਂ ਦੀ ਗਿਣਤੀ n=2 ਨੂੰ ਜਿਓਮੈਟ੍ਰਿਕ ਸਿਰੀਜ਼ ਯੋਗ ਫਾਰਮੂਲੇ ਵਿੱਚ ਪਲੱਗ ਕਰੋ:

s2=-9*((1-1.55555555555555562)/(1-1.5555555555555556))

s2=-9*((1-2.419753086419753)/(1-1.5555555555555556))

s2=-9*(-1.4197530864197532/(1-1.5555555555555556))

s2=-9*(-1.4197530864197532/-0.5555555555555556)

s2=92.555555555555556

s2=23.000000000000004

3. ਆਮ ਫਾਰਮ ਲੱਭੋ

an=arn1

ਕ੍ਰਮ ਦੀ ਆਮ ਰੂਪ ਲੱਭਣ ਲਈ, ਪਹਿਲਾ ਅੰਕ: a=9 ਅਤੇ ਆਮ ਅਨੁਪਾਤ: r=1.5555555555555556 ਨੂੰ ਜਿਓਮੈਟ੍ਰਿਕ ਸਿਰੀਜ਼ ਦੇ ਫਾਰਮੂਲੇ ਵਿੱਚ ਪਲੱਗ ਕਰੋ:

an=91.5555555555555556n1

4. nth ਅੰਕ ਲੱਭੋ

ਸਾਧਾਰਣ ਫਾਰਮ ਨੂੰ ਵਰਤੋਂ ਤਾਂ ਜੋ ਕਿ nth ਮਿਆਰੀ ਨੂੰ ਲੱਭ ਸਕੇਈਏ

a1=9

a2=a1·rn1=91.555555555555555621=91.55555555555555561=91.5555555555555556=14

a3=a1·rn1=91.555555555555555631=91.55555555555555562=92.419753086419753=21.77777777777778

a4=a1·rn1=91.555555555555555641=91.55555555555555563=93.7640603566529496=33.876543209876544

a5=a1·rn1=91.555555555555555651=91.55555555555555564=95.855204999237921=52.69684499314129

a6=a1·rn1=91.555555555555555661=91.55555555555555565=99.108096665481211=81.9728699893309

a7=a1·rn1=91.555555555555555671=91.55555555555555566=914.168150368526328=127.51335331673695

a8=a1·rn1=91.555555555555555681=91.55555555555555567=922.039345017707625=198.35410515936863

a9=a1·rn1=91.555555555555555691=91.55555555555555568=934.283425583100744=308.5508302479067

a10=a1·rn1=91.5555555555555556101=91.55555555555555569=953.32977312926783=479.96795816341046

ਇਸ ਨੂੰ ਕਿਉਂ ਸਿੱਖਣਾ ਹੈ

ਗਿਆਤੀ ਕ੍ਰਮਬੱਧਾਂ ਨੂੰ ਗਣਿਤ, ਭੌਤਿਕ ਵਿਗਿਆਨ, ਇੰਜੀਨੀਅਰੀ, ਜੀਵ ਵਿਗਿਆਨ, ਅਰਥਵਿਸ਼ਲੇਸ਼ਣ, ਕੰਪਿਉਟਰ ਵਿਗਿਆਨ, ਵਿੱਤ, ਅਤੇ ਹੋਰ ਲਗਭਗ ਹਰ ਵਿਗਿਆਨ ਦੀ ਸਮਝ ਸਮਝਾਉਣ ਲਈ ਵਰਤਿਆ ਜਾਂਦਾ ਹੈ, ਜਿਸ ਨੇ ਇਸਨੂੰ ਸਾਡੇ ਟੂਲਕਿਟ ਵਿਚ ਬਹੁਤ ਵਰਗੀਆ ਸਾਧਨ ਬਣਾ ਦਿੱਤਾ ਹੈ। ਗਿਆਤੀ ਕ੍ਰਮਬੱਧਾਂ ਦਾ ਸਭ ਤੋਂ ਆਮ ਉਪਯੋਗ ਕਿਸੇ ਹੋਰ ਪ੍ਰਤਿ'ਪਾਦ' ਕੰਪਾਊਂਡ ਬਿਆਜ ਦਾ ਹਿਸਾਬ ਲਗਾਉਣਾ ਹੈ, ਜੋ ਕੇ ਵਿੱਤ ਨਾਲ ਸਬੰਧਤ ਰੂਝਾਨ ਹੈ ਅਤੇ ਜੋ ਬਹੁਤ ਸਾਰੇ ਪੈਸੇ ਕਮਾਉਣ ਜਾਂ ਗੁਆ ਕਰਨ ਵਿੱਚ ਕਰ ਸਕਦਾ ਹੈ! ਹੋਰ ਉਪਯੋਗ ਪ੍ਰੌਬਬਿਲਿਟੀ ਦਾ ਹਿਸਾਬ ਲਗਾਉਣਾ, ਸਮੇਂ ਨਾਲ ਤੇਜੀ ਦੇ ਪ੍ਰਭਾਵ ਮਾਪਣਾ, ਅਤੇ ਇਮਾਰਤਾਂ ਦਾ ਨਿਰਮਾਣ ਕਰਨਾ ਸ਼ਾਮਲ ਹਨ, ਪਰ ਜਰੂਰ ਇਸ ਨਾਲ ਸੀਮਿਤ ਨਹੀਂ ਹਨ।

ਸ਼ਰਤਾਂ ਅਤੇ ਵਿਸ਼ੇ