Wprowadź równanie lub problem
Kamera nie rozpoznaje wprowadzenia!

Rozwiązanie - Ciągi geometryczne

Ilorazem ciągu jest: r=2,3333333333333335
r=2,3333333333333335
Sumą tego ciągu jest: s=10
s=-10
Ogólną formą tego ciągu jest: an=32,3333333333333335n1
a_n=-3*2,3333333333333335^(n-1)
n-tym wyrazem tego ciągu jest: 3,7,16,333333333333336,38,111111111111114,88,92592592592595,207,4938271604939,484,15226337448576,1129,688614540467,2635,940100594423,6150,5269013869865
-3,-7,-16,333333333333336,-38,111111111111114,-88,92592592592595,-207,4938271604939,-484,15226337448576,-1129,688614540467,-2635,940100594423,-6150,5269013869865

Inne sposoby na rozwiązanie

Ciągi geometryczne

Krok po kroku wyjaśnienie

1. Znajdź iloraz

Znajdź iloraz, dzieląc jakikolwiek wyraz ciągu przez poprzedni wyraz:

a2a1=73=2,3333333333333335

Stały iloraz (r) sekwencji jest równy ilorazowi dwóch kolejnych wyrazów.
r=2,3333333333333335

2. Znajdź sumę

5 dodatkowe steps

sn=a*((1-rn)/(1-r))

Aby znaleźć sumę tego ciągu, wstaw pierwszy wyraz: a=-3, iloraz: r=2,3333333333333335 oraz liczbę elementów n=2 do wzoru na sumę ciągu geometrycznego:

s2=-3*((1-2,33333333333333352)/(1-2,3333333333333335))

s2=-3*((1-5,4444444444444455)/(1-2,3333333333333335))

s2=-3*(-4,4444444444444455/(1-2,3333333333333335))

s2=-3*(-4,4444444444444455/-1,3333333333333335)

s2=33,333333333333334

s2=10,000000000000002

3. Znajdź postać ogólną

an=arn1

Aby znaleźć ogólną formę ciągu, wstaw pierwszy wyraz: a=3 oraz iloraz: r=2,3333333333333335 do wzoru na ciąg geometryczny:

an=32,3333333333333335n1

4. Znajdź n-ty wyraz

Użyj ogólnej formy do znalezienia n-tego wyrazu

a1=3

a2=a1·rn1=32,333333333333333521=32,33333333333333351=32,3333333333333335=7

a3=a1·rn1=32,333333333333333531=32,33333333333333352=35,4444444444444455=16,333333333333336

a4=a1·rn1=32,333333333333333541=32,33333333333333353=312,703703703703706=38,111111111111114

a5=a1·rn1=32,333333333333333551=32,33333333333333354=329,64197530864198=88,92592592592595

a6=a1·rn1=32,333333333333333561=32,33333333333333355=369,16460905349797=207,4938271604939

a7=a1·rn1=32,333333333333333571=32,33333333333333356=3161,38408779149526=484,15226337448576

a8=a1·rn1=32,333333333333333581=32,33333333333333357=3376,562871513489=1129,688614540467

a9=a1·rn1=32,333333333333333591=32,33333333333333358=3878,6467001981409=2635,940100594423

a10=a1·rn1=32,3333333333333335101=32,33333333333333359=32050,175633795662=6150,5269013869865

Dlaczego uczyć się tego

Ciągi geometryczne są powszechnie używane do wyjaśniania koncepcji w matematyce, fizyce, inżynierii, biologii, ekonomii, informatyce, finansach i innych dziedzinach, co czyni je bardzo użytecznym narzędziem w naszych zestawach narzędzi. Jednym z najczęstszych zastosowań ciągów geometrycznych jest na przykład obliczanie wypracowanych lub niespłaconych odsetek złożonych, aktivność najczęściej kojarzona z finansami, która może oznaczać zarobek lub utratę dużych sum pieniędzy! Inne zastosowania obejmują, ale zdecydowanie nie ograniczają się do, obliczania prawdopodobieństwa, mierzenia radioaktywności z czasem i projektowania budynków.

Terminy i tematy