Wprowadź równanie lub problem
Kamera nie rozpoznaje wprowadzenia!

Rozwiązanie - Ciągi geometryczne

Ilorazem ciągu jest: r=0,6129032258064516
r=0,6129032258064516
Sumą tego ciągu jest: s=50
s=-50
Ogólną formą tego ciągu jest: an=310,6129032258064516n1
a_n=-31*0,6129032258064516^(n-1)
n-tym wyrazem tego ciągu jest: 31,19,11,64516129032258,7,13735691987513,4,374509079923467,2,6811507264047054,1,643285929086755,1,007175246859624,0,6173009577526728,0,37834574830002526
-31,-19,-11,64516129032258,-7,13735691987513,-4,374509079923467,-2,6811507264047054,-1,643285929086755,-1,007175246859624,-0,6173009577526728,-0,37834574830002526

Inne sposoby na rozwiązanie

Ciągi geometryczne

Krok po kroku wyjaśnienie

1. Znajdź iloraz

Znajdź iloraz, dzieląc jakikolwiek wyraz ciągu przez poprzedni wyraz:

a2a1=1931=0,6129032258064516

Stały iloraz (r) sekwencji jest równy ilorazowi dwóch kolejnych wyrazów.
r=0,6129032258064516

2. Znajdź sumę

5 dodatkowe steps

sn=a*((1-rn)/(1-r))

Aby znaleźć sumę tego ciągu, wstaw pierwszy wyraz: a=-31, iloraz: r=0,6129032258064516 oraz liczbę elementów n=2 do wzoru na sumę ciągu geometrycznego:

s2=-31*((1-0,61290322580645162)/(1-0,6129032258064516))

s2=-31*((1-0,3756503642039542)/(1-0,6129032258064516))

s2=-31*(0,6243496357960459/(1-0,6129032258064516))

s2=-31*(0,6243496357960459/0,3870967741935484)

s2=311,6129032258064517

s2=50,00000000000001

3. Znajdź postać ogólną

an=arn1

Aby znaleźć ogólną formę ciągu, wstaw pierwszy wyraz: a=31 oraz iloraz: r=0,6129032258064516 do wzoru na ciąg geometryczny:

an=310,6129032258064516n1

4. Znajdź n-ty wyraz

Użyj ogólnej formy do znalezienia n-tego wyrazu

a1=31

a2=a1·rn1=310,612903225806451621=310,61290322580645161=310,6129032258064516=19

a3=a1·rn1=310,612903225806451631=310,61290322580645162=310,3756503642039542=11,64516129032258

a4=a1·rn1=310,612903225806451641=310,61290322580645163=310,23023731999597194=7,13735691987513

a5=a1·rn1=310,612903225806451651=310,61290322580645164=310,14111319612656345=4,374509079923467

a6=a1·rn1=310,612903225806451661=310,61290322580645165=310,08648873310982921=2,6811507264047054

a7=a1·rn1=310,612903225806451671=310,61290322580645166=310,05300922351892758=1,643285929086755

a8=a1·rn1=310,612903225806451681=310,61290322580645167=310,03248952409224594=1,007175246859624

a9=a1·rn1=310,612903225806451691=310,61290322580645168=310,019912934121053962=0,6173009577526728

a10=a1·rn1=310,6129032258064516101=310,61290322580645169=310,012204701558065332=0,37834574830002526

Dlaczego uczyć się tego

Ciągi geometryczne są powszechnie używane do wyjaśniania koncepcji w matematyce, fizyce, inżynierii, biologii, ekonomii, informatyce, finansach i innych dziedzinach, co czyni je bardzo użytecznym narzędziem w naszych zestawach narzędzi. Jednym z najczęstszych zastosowań ciągów geometrycznych jest na przykład obliczanie wypracowanych lub niespłaconych odsetek złożonych, aktivność najczęściej kojarzona z finansami, która może oznaczać zarobek lub utratę dużych sum pieniędzy! Inne zastosowania obejmują, ale zdecydowanie nie ograniczają się do, obliczania prawdopodobieństwa, mierzenia radioaktywności z czasem i projektowania budynków.

Terminy i tematy