Wprowadź równanie lub problem
Kamera nie rozpoznaje wprowadzenia!

Rozwiązanie - Ciągi geometryczne

Ilorazem ciągu jest: r=1,0256410256410255
r=1,0256410256410255
Sumą tego ciągu jest: s=78999999
s=-78999999
Ogólną formą tego ciągu jest: an=390000001,0256410256410255n1
a_n=-39000000*1,0256410256410255^(n-1)
n-tym wyrazem tego ciągu jest: 39000000,40000000,41025641,02564102,42077580,53911899,43156492,86063486,44263069,60065113,45398020,10323193,46562071,90075068,47755971,18025711,48980483,26180217
-39000000,-40000000,-41025641,02564102,-42077580,53911899,-43156492,86063486,-44263069,60065113,-45398020,10323193,-46562071,90075068,-47755971,18025711,-48980483,26180217

Inne sposoby na rozwiązanie

Ciągi geometryczne

Krok po kroku wyjaśnienie

1. Znajdź iloraz

Znajdź iloraz, dzieląc jakikolwiek wyraz ciągu przez poprzedni wyraz:

a2a1=4000000039000000=1,0256410256410255

Stały iloraz (r) sekwencji jest równy ilorazowi dwóch kolejnych wyrazów.
r=1,0256410256410255

2. Znajdź sumę

5 dodatkowe steps

sn=a*((1-rn)/(1-r))

Aby znaleźć sumę tego ciągu, wstaw pierwszy wyraz: a=-39000000, iloraz: r=1,0256410256410255 oraz liczbę elementów n=2 do wzoru na sumę ciągu geometrycznego:

s2=-39000000*((1-1,02564102564102552)/(1-1,0256410256410255))

s2=-39000000*((1-1,0519395134779748)/(1-1,0256410256410255))

s2=-39000000*(-0,051939513477974764/(1-1,0256410256410255))

s2=-39000000*(-0,051939513477974764/-0,02564102564102555)

s2=390000002,025641025641023

s2=78999999,9999999

3. Znajdź postać ogólną

an=arn1

Aby znaleźć ogólną formę ciągu, wstaw pierwszy wyraz: a=39000000 oraz iloraz: r=1,0256410256410255 do wzoru na ciąg geometryczny:

an=390000001,0256410256410255n1

4. Znajdź n-ty wyraz

Użyj ogólnej formy do znalezienia n-tego wyrazu

a1=39000000

a2=a1·rn1=390000001,025641025641025521=390000001,02564102564102551=390000001,0256410256410255=40000000

a3=a1·rn1=390000001,025641025641025531=390000001,02564102564102552=390000001,0519395134779748=41025641,02564102

a4=a1·rn1=390000001,025641025641025541=390000001,02564102564102553=390000001,0789123215158716=42077580,53911899

a5=a1·rn1=390000001,025641025641025551=390000001,02564102564102554=390000001,1065767400162785=43156492,86063486

a6=a1·rn1=390000001,025641025641025561=390000001,02564102564102555=390000001,1349505025807982=44263069,60065113

a7=a1·rn1=390000001,025641025641025571=390000001,02564102564102556=390000001,1640517975187674=45398020,10323193

a8=a1·rn1=390000001,025641025641025581=390000001,02564102564102557=390000001,1938992795064278=46562071,90075068

a9=a1·rn1=390000001,025641025641025591=390000001,02564102564102558=390000001,224512081545054=47755971,18025711

a10=a1·rn1=390000001,0256410256410255101=390000001,02564102564102559=390000001,2559098272256966=48980483,26180217

Dlaczego uczyć się tego

Ciągi geometryczne są powszechnie używane do wyjaśniania koncepcji w matematyce, fizyce, inżynierii, biologii, ekonomii, informatyce, finansach i innych dziedzinach, co czyni je bardzo użytecznym narzędziem w naszych zestawach narzędzi. Jednym z najczęstszych zastosowań ciągów geometrycznych jest na przykład obliczanie wypracowanych lub niespłaconych odsetek złożonych, aktivność najczęściej kojarzona z finansami, która może oznaczać zarobek lub utratę dużych sum pieniędzy! Inne zastosowania obejmują, ale zdecydowanie nie ograniczają się do, obliczania prawdopodobieństwa, mierzenia radioaktywności z czasem i projektowania budynków.

Terminy i tematy