Wprowadź równanie lub problem
Kamera nie rozpoznaje wprowadzenia!

Rozwiązanie - Ciągi geometryczne

Ilorazem ciągu jest: r=0,3333333333333333
r=-0,3333333333333333
Sumą tego ciągu jest: s=1323
s=1323
Ogólną formą tego ciągu jest: an=17010,3333333333333333n1
a_n=1701*-0,3333333333333333^(n-1)
n-tym wyrazem tego ciągu jest: 1701,567,189,62,999999999999986,20,999999999999996,6,999999999999997,2,3333333333333326,0,7777777777777775,0,25925925925925913,0,0864197530864197
1701,-567,189,-62,999999999999986,20,999999999999996,-6,999999999999997,2,3333333333333326,-0,7777777777777775,0,25925925925925913,-0,0864197530864197

Inne sposoby na rozwiązanie

Ciągi geometryczne

Krok po kroku wyjaśnienie

1. Znajdź iloraz

Znajdź iloraz, dzieląc jakikolwiek wyraz ciągu przez poprzedni wyraz:

a2a1=5671701=0,3333333333333333

a3a2=189567=0,3333333333333333

Stały iloraz (r) sekwencji jest równy ilorazowi dwóch kolejnych wyrazów.
r=0,3333333333333333

2. Znajdź sumę

5 dodatkowe steps

sn=a*((1-rn)/(1-r))

Aby znaleźć sumę tego ciągu, wstaw pierwszy wyraz: a=1 701, iloraz: r=-0,3333333333333333 oraz liczbę elementów n=3 do wzoru na sumę ciągu geometrycznego:

s3=1701*((1--0,33333333333333333)/(1--0,3333333333333333))

s3=1701*((1--0,03703703703703703)/(1--0,3333333333333333))

s3=1701*(1,037037037037037/(1--0,3333333333333333))

s3=1701*(1,037037037037037/1,3333333333333333)

s3=17010,7777777777777778

s3=1323

3. Znajdź postać ogólną

an=arn1

Aby znaleźć ogólną formę ciągu, wstaw pierwszy wyraz: a=1701 oraz iloraz: r=0,3333333333333333 do wzoru na ciąg geometryczny:

an=17010,3333333333333333n1

4. Znajdź n-ty wyraz

Użyj ogólnej formy do znalezienia n-tego wyrazu

a1=1701

a2=a1·rn1=17010,333333333333333321=17010,33333333333333331=17010,3333333333333333=567

a3=a1·rn1=17010,333333333333333331=17010,33333333333333332=17010,1111111111111111=189

a4=a1·rn1=17010,333333333333333341=17010,33333333333333333=17010,03703703703703703=62,999999999999986

a5=a1·rn1=17010,333333333333333351=17010,33333333333333334=17010,012345679012345677=20,999999999999996

a6=a1·rn1=17010,333333333333333361=17010,33333333333333335=17010,004115226337448558=6,999999999999997

a7=a1·rn1=17010,333333333333333371=17010,33333333333333336=17010,0013717421124828527=2,3333333333333326

a8=a1·rn1=17010,333333333333333381=17010,33333333333333337=17010,00045724737082761756=0,7777777777777775

a9=a1·rn1=17010,333333333333333391=17010,33333333333333338=17010,0001524157902758725=0,25925925925925913

a10=a1·rn1=17010,3333333333333333101=17010,33333333333333339=17015,0805263425290837E05=0,0864197530864197

Dlaczego uczyć się tego

Ciągi geometryczne są powszechnie używane do wyjaśniania koncepcji w matematyce, fizyce, inżynierii, biologii, ekonomii, informatyce, finansach i innych dziedzinach, co czyni je bardzo użytecznym narzędziem w naszych zestawach narzędzi. Jednym z najczęstszych zastosowań ciągów geometrycznych jest na przykład obliczanie wypracowanych lub niespłaconych odsetek złożonych, aktivność najczęściej kojarzona z finansami, która może oznaczać zarobek lub utratę dużych sum pieniędzy! Inne zastosowania obejmują, ale zdecydowanie nie ograniczają się do, obliczania prawdopodobieństwa, mierzenia radioaktywności z czasem i projektowania budynków.

Terminy i tematy