Wprowadź równanie lub problem
Kamera nie rozpoznaje wprowadzenia!

Rozwiązanie - Ciągi geometryczne

Ilorazem ciągu jest: r=0,12903225806451613
r=0,12903225806451613
Sumą tego ciągu jest: s=35
s=35
Ogólną formą tego ciągu jest: an=310,12903225806451613n1
a_n=31*0,12903225806451613^(n-1)
n-tym wyrazem tego ciągu jest: 31,4,0,5161290322580645,0,06659729448491154,0,008593199288375684,0,0011087999081775073,0,00014307095589387192,1,8460768502435086E05,2,3820346454754947E06,3,0735930909361223E07
31,4,0,5161290322580645,0,06659729448491154,0,008593199288375684,0,0011087999081775073,0,00014307095589387192,1,8460768502435086E-05,2,3820346454754947E-06,3,0735930909361223E-07

Krok po kroku wyjaśnienie

Dlaczego uczyć się tego

Ciągi geometryczne są powszechnie używane do wyjaśniania koncepcji w matematyce, fizyce, inżynierii, biologii, ekonomii, informatyce, finansach i innych dziedzinach, co czyni je bardzo użytecznym narzędziem w naszych zestawach narzędzi. Jednym z najczęstszych zastosowań ciągów geometrycznych jest na przykład obliczanie wypracowanych lub niespłaconych odsetek złożonych, aktivność najczęściej kojarzona z finansami, która może oznaczać zarobek lub utratę dużych sum pieniędzy! Inne zastosowania obejmują, ale zdecydowanie nie ograniczają się do, obliczania prawdopodobieństwa, mierzenia radioaktywności z czasem i projektowania budynków.

Terminy i tematy