Wprowadź równanie lub problem
Kamera nie rozpoznaje wprowadzenia!

Rozwiązanie - Statystyki

Suma: 21
21
Średnia arytmetyczna: x̄=5,25
x̄=5,25
Mediana: 5,5
5,5
Zakres: 4
4
Wariancja: s2=2916
s^2=2 916
Odchylenie standardowe: s=1708
s=1 708

Inne sposoby na rozwiązanie

Statystyki

Krok po kroku wyjaśnienie

1. Znajdź sumę

Dodaj wszystkie liczby:

3+5+7+6=21

Suma wynosi 21

2. Znajdź średnią

Podziel sumę przez liczbę wyrazów:

Suma
21
Liczba wyrazów
4

x̄=214=5,25

Średnia wynosi 5,25

3. Znajdź medianę

Ustaw liczby w porządku rosnącym:
3,5,6,7

Policz liczbę termów:
Jest (4) terminów

Ponieważ liczba termów jest parzysta, zidentyfikuj dwa środkowe terminy:
3,5,6,7

Znajdź wartość pośrodku pomiędzy dwoma środkowymi termami, dodając je razem i dzieląc przez 2:
(5+6)/2=11/2=5,5

Mediana wynosi 5,5

4. Znajdź zakres

Aby znaleźć zakres, odejmij najniższą wartość od najwyższej.

Najwyższa wartość wynosi 7
Najniższa wartość to 3

73=4

Zakres wynosi 4

5. Znajdź wariancję

Aby znaleźć wariancję próbki, znajdź różnicę między każdym wyrazem a średnią, podnieś wyniki do kwadratu, dodaj razem wszystkie wyniki kwadratowe, a następnie podziel sumę przez liczbę wyrazów minus 1.

Średnia wynosi 5,25

Aby uzyskać kwadrat różnic, odejmij średnią od każdego termu i podnieś wynik do kwadratu:

(35,25)2=5062

(55,25)2=0062

(75,25)2=3062

(65,25)2=0562

Aby uzyskać wariancję próbki, dodaj razem kwadraty różnic i podziel ich sumę przez liczbę terminów minus 1

Suma:
5 062+0 062+3 062+0 562=8 748
Liczba termów:
4
Liczba termów minus 1:
3

Wariancja:
8 7483=2 916

Wariancja próbki (s2) wynosi 2,916

6. Znajdź odchylenie standardowe

Odchylenie standardowe próbki wynosi pierwiastek kwadratowy z wariancji próbki. Dlatego wariancję zazwyczaj przedstawia się za pomocą zmiennej podniesionej do kwadratu.

Wariancja: s2=2,916

Znajdź pierwiastek kwadratowy:
s=(2,916)=1708

Odchylenie standardowe (s) wynosi 1 708

Dlaczego uczyć się tego

Nauka statystyki zajmuje się zbieraniem, analizą, interpretacją i prezentacją danych, szczególnie w kontekstach niepewności i zmienności. Zrozumienie nawet najbardziej podstawowych pojęć statystycznych pomaga nam lepiej przetwarzać i zrozumieć informacje, które napotykamy na co dzień! Dodatkowo, więcej danych jest teraz zbieranych, w XXI wieku, niż kiedykolwiek wcześniej w całej historii ludzkości. Ponieważ komputery stały się bardziej potężne, umożliwiły analizę i interpretację coraz większych zestawów danych. Z tego powodu analiza statystyczna staje się coraz ważniejsza w wielu dziedzinach, pozwalając rządom i firmom na pełne zrozumienie i reagowanie na dane.

Terminy i tematy