Introduzir uma equação ou problema
Entrada de câmara não reconhecida!

Solução - Sequências geométricas

A razão comum é: r=0,12162162162162163
r=0,12162162162162163
A soma desta sequência é: s=83
s=83
A forma geral desta série é: an=740,12162162162162163n1
a_n=74*0,12162162162162163^(n-1)
O enésimo termo desta série é: 74,9,1,0945945945945947,0,13312636961285612,0,016191044952914936,0,0019691811429220865,0,00023949500386890246,2,912777074081246E05,3,542566711720435E06,4,308527081822151E07
74,9,1,0945945945945947,0,13312636961285612,0,016191044952914936,0,0019691811429220865,0,00023949500386890246,2,912777074081246E-05,3,542566711720435E-06,4,308527081822151E-07

Explicação passo a passo

Porque aprender isto

Sequências geométricas são comumente usadas para explicar conceitos em matemática, física, engenharia, biologia, economia, ciência da computação, finanças e mais, tornando-as uma ferramenta muito útil para ter em nossas caixas de ferramentas. Uma das aplicações mais comuns de sequências geométricas, por exemplo, é calcular juros compostos ganhos ou não pagos, uma atividade geralmente associada à finanças, que pode significar ganhar ou perder muito dinheiro! Outras aplicações incluem, mas certamente não estão limitadas a, calcular a probabilidade, medir a radioatividade ao longo do tempo e desenhar edifícios.