Introduzir uma equação ou problema
Entrada de câmara não reconhecida!

Solução - Sequências geométricas

A razão comum é: r=0,16091954022988506
r=0,16091954022988506
A soma desta sequência é: s=101
s=101
A forma geral desta série é: an=870,16091954022988506n1
a_n=87*0,16091954022988506^(n-1)
O enésimo termo desta série é: 87,14,2,2528735632183907,0,3625313779891663,0,05833838266492331,0,009387785716194556,0,0015106781612267103,0,00024309763513993038,3,9119159677689944E05,6,295037189513324E06
87,14,2,2528735632183907,0,3625313779891663,0,05833838266492331,0,009387785716194556,0,0015106781612267103,0,00024309763513993038,3,9119159677689944E-05,6,295037189513324E-06

Explicação passo a passo

Porque aprender isto

Sequências geométricas são comumente usadas para explicar conceitos em matemática, física, engenharia, biologia, economia, ciência da computação, finanças e mais, tornando-as uma ferramenta muito útil para ter em nossas caixas de ferramentas. Uma das aplicações mais comuns de sequências geométricas, por exemplo, é calcular juros compostos ganhos ou não pagos, uma atividade geralmente associada à finanças, que pode significar ganhar ou perder muito dinheiro! Outras aplicações incluem, mas certamente não estão limitadas a, calcular a probabilidade, medir a radioatividade ao longo do tempo e desenhar edifícios.