Introduzir uma equação ou problema
Entrada de câmara não reconhecida!

Solução - Sequências geométricas

A razão comum é: r=1,1818181818181819
r=1,1818181818181819
A soma desta sequência é: s=24
s=-24
A forma geral desta série é: an=111,1818181818181819n1
a_n=-11*1,1818181818181819^(n-1)
O enésimo termo desta série é: 11,13,15,363636363636367,18,157024793388434,21,45830202854997,25,35981148828633,29,97068630433839,35,41990199603627,41,859884177133786,49,470772209339934
-11,-13,-15,363636363636367,-18,157024793388434,-21,45830202854997,-25,35981148828633,-29,97068630433839,-35,41990199603627,-41,859884177133786,-49,470772209339934

Outras maneiras de resolver

Sequências geométricas

Explicação passo a passo

1. Encontrar a razão comum

Encontrar a razão comum ao dividir qualquer termo na sequência pelo termo precedente:

a2a1=1311=1,1818181818181819

A razão comum (r) da sequência é constante e é igual à diferença entre o quociente de dois termos consecutivos.
r=1,1818181818181819

2. Encontrar a soma

5 passos adicionais

sn=a*((1-rn)/(1-r))

Para encontrar a soma da série, introduz o primeiro termo: a=11, a razão comum: r=1,1818181818181819 e o número de elementos n=2 na fórmula de soma da série geométrica:

s2=-11*((1-1,18181818181818192)/(1-1,1818181818181819))

s2=-11*((1-1,3966942148760333)/(1-1,1818181818181819))

s2=-11*(-0,3966942148760333/(1-1,1818181818181819))

s2=-11*(-0,3966942148760333/-0,18181818181818188)

s2=112,1818181818181825

s2=24,000000000000007

3. Encontrar a forma geral

an=arn1

Para encontrar a forma geral das séries, introduz o primeiro termo: a=11 e a razão comum: r=1,1818181818181819 na fórmula para séries geométricas:

an=111,1818181818181819n1

4. Encontrar o enésimo termo

Utilizar a forma geral para encontrar o enésimo termo

a1=11

a2=a1·rn1=111,181818181818181921=111,18181818181818191=111,1818181818181819=13

a3=a1·rn1=111,181818181818181931=111,18181818181818192=111,3966942148760333=15,363636363636367

a4=a1·rn1=111,181818181818181941=111,18181818181818193=111,6506386175807666=18,157024793388434

a5=a1·rn1=111,181818181818181951=111,18181818181818194=111,9507547298681789=21,45830202854997

a6=a1·rn1=111,181818181818181961=111,18181818181818195=112,30543740802603=25,35981148828633

a7=a1·rn1=111,181818181818181971=111,18181818181818196=112,7246078458489444=29,97068630433839

a8=a1·rn1=111,181818181818181981=111,18181818181818197=113,2199910905487523=35,41990199603627

a9=a1·rn1=111,181818181818181991=111,18181818181818198=113,8054440161030714=41,859884177133786

a10=a1·rn1=111,1818181818181819101=111,18181818181818199=114,497342928121812=49,470772209339934

Porque aprender isto

Sequências geométricas são comumente usadas para explicar conceitos em matemática, física, engenharia, biologia, economia, ciência da computação, finanças e mais, tornando-as uma ferramenta muito útil para ter em nossas caixas de ferramentas. Uma das aplicações mais comuns de sequências geométricas, por exemplo, é calcular juros compostos ganhos ou não pagos, uma atividade geralmente associada à finanças, que pode significar ganhar ou perder muito dinheiro! Outras aplicações incluem, mas certamente não estão limitadas a, calcular a probabilidade, medir a radioatividade ao longo do tempo e desenhar edifícios.