Introduzir uma equação ou problema
Entrada de câmara não reconhecida!

Solução - Sequências geométricas

A razão comum é: r=0,3333333333333333
r=-0,3333333333333333
A soma desta sequência é: s=6615
s=-6615
A forma geral desta série é: an=85050,3333333333333333n1
a_n=-8505*-0,3333333333333333^(n-1)
O enésimo termo desta série é: 8505,2835,945,314,99999999999994,104,99999999999999,34,999999999999986,11,666666666666663,3,8888888888888875,1,2962962962962956,0,4320987654320986
-8505,2835,-945,314,99999999999994,-104,99999999999999,34,999999999999986,-11,666666666666663,3,8888888888888875,-1,2962962962962956,0,4320987654320986

Outras maneiras de resolver

Sequências geométricas

Explicação passo a passo

1. Encontrar a razão comum

Encontrar a razão comum ao dividir qualquer termo na sequência pelo termo precedente:

a2a1=28358505=0,3333333333333333

a3a2=9452835=0,3333333333333333

A razão comum (r) da sequência é constante e é igual à diferença entre o quociente de dois termos consecutivos.
r=0,3333333333333333

2. Encontrar a soma

5 passos adicionais

sn=a*((1-rn)/(1-r))

Para encontrar a soma da série, introduz o primeiro termo: a=8505, a razão comum: r=0,3333333333333333 e o número de elementos n=3 na fórmula de soma da série geométrica:

s3=-8505*((1--0,33333333333333333)/(1--0,3333333333333333))

s3=-8505*((1--0,03703703703703703)/(1--0,3333333333333333))

s3=-8505*(1,037037037037037/(1--0,3333333333333333))

s3=-8505*(1,037037037037037/1,3333333333333333)

s3=85050,7777777777777778

s3=6615

3. Encontrar a forma geral

an=arn1

Para encontrar a forma geral das séries, introduz o primeiro termo: a=8505 e a razão comum: r=0,3333333333333333 na fórmula para séries geométricas:

an=85050,3333333333333333n1

4. Encontrar o enésimo termo

Utilizar a forma geral para encontrar o enésimo termo

a1=8505

a2=a1·rn1=85050,333333333333333321=85050,33333333333333331=85050,3333333333333333=2835

a3=a1·rn1=85050,333333333333333331=85050,33333333333333332=85050,1111111111111111=945

a4=a1·rn1=85050,333333333333333341=85050,33333333333333333=85050,03703703703703703=314,99999999999994

a5=a1·rn1=85050,333333333333333351=85050,33333333333333334=85050,012345679012345677=104,99999999999999

a6=a1·rn1=85050,333333333333333361=85050,33333333333333335=85050,004115226337448558=34,999999999999986

a7=a1·rn1=85050,333333333333333371=85050,33333333333333336=85050,0013717421124828527=11,666666666666663

a8=a1·rn1=85050,333333333333333381=85050,33333333333333337=85050,00045724737082761756=3,8888888888888875

a9=a1·rn1=85050,333333333333333391=85050,33333333333333338=85050,0001524157902758725=1,2962962962962956

a10=a1·rn1=85050,3333333333333333101=85050,33333333333333339=85055,0805263425290837E05=0,4320987654320986

Porque aprender isto

Sequências geométricas são comumente usadas para explicar conceitos em matemática, física, engenharia, biologia, economia, ciência da computação, finanças e mais, tornando-as uma ferramenta muito útil para ter em nossas caixas de ferramentas. Uma das aplicações mais comuns de sequências geométricas, por exemplo, é calcular juros compostos ganhos ou não pagos, uma atividade geralmente associada à finanças, que pode significar ganhar ou perder muito dinheiro! Outras aplicações incluem, mas certamente não estão limitadas a, calcular a probabilidade, medir a radioatividade ao longo do tempo e desenhar edifícios.