Introduzir uma equação ou problema
Entrada de câmara não reconhecida!

Solução - Sequências geométricas

A razão comum é: r=4
r=-4
A soma desta sequência é: s=377
s=377
A forma geral desta série é: an=294n1
a_n=29*-4^(n-1)
O enésimo termo desta série é: 29,116,464,1856,7424,29696,118784,475136,1900544,7602176
29,-116,464,-1856,7424,-29696,118784,-475136,1900544,-7602176

Outras maneiras de resolver

Sequências geométricas

Explicação passo a passo

1. Encontrar a razão comum

Encontrar a razão comum ao dividir qualquer termo na sequência pelo termo precedente:

a2a1=11629=4

a3a2=464116=4

A razão comum (r) da sequência é constante e é igual à diferença entre o quociente de dois termos consecutivos.
r=4

2. Encontrar a soma

5 passos adicionais

sn=a*((1-rn)/(1-r))

Para encontrar a soma da série, introduz o primeiro termo: a=29, a razão comum: r=4 e o número de elementos n=3 na fórmula de soma da série geométrica:

s3=29*((1--43)/(1--4))

s3=29*((1--64)/(1--4))

s3=29*(65/(1--4))

s3=29*(65/5)

s3=2913

s3=377

3. Encontrar a forma geral

an=arn1

Para encontrar a forma geral das séries, introduz o primeiro termo: a=29 e a razão comum: r=4 na fórmula para séries geométricas:

an=294n1

4. Encontrar o enésimo termo

Utilizar a forma geral para encontrar o enésimo termo

a1=29

a2=a1·rn1=29421=2941=294=116

a3=a1·rn1=29431=2942=2916=464

a4=a1·rn1=29441=2943=2964=1856

a5=a1·rn1=29451=2944=29256=7424

a6=a1·rn1=29461=2945=291024=29696

a7=a1·rn1=29471=2946=294096=118784

a8=a1·rn1=29481=2947=2916384=475136

a9=a1·rn1=29491=2948=2965536=1900544

a10=a1·rn1=294101=2949=29262144=7602176

Porque aprender isto

Sequências geométricas são comumente usadas para explicar conceitos em matemática, física, engenharia, biologia, economia, ciência da computação, finanças e mais, tornando-as uma ferramenta muito útil para ter em nossas caixas de ferramentas. Uma das aplicações mais comuns de sequências geométricas, por exemplo, é calcular juros compostos ganhos ou não pagos, uma atividade geralmente associada à finanças, que pode significar ganhar ou perder muito dinheiro! Outras aplicações incluem, mas certamente não estão limitadas a, calcular a probabilidade, medir a radioatividade ao longo do tempo e desenhar edifícios.