Introduzir uma equação ou problema
Entrada de câmara não reconhecida!

Solução - Sequências geométricas

A razão comum é: r=0,16666666666666666
r=-0,16666666666666666
A soma desta sequência é: s=278
s=278
A forma geral desta série é: an=3240,16666666666666666n1
a_n=324*-0,16666666666666666^(n-1)
O enésimo termo desta série é: 324,54,9,1,4999999999999996,0,24999999999999994,0,04166666666666665,0,0069444444444444415,0,001157407407407407,0,00019290123456790114,3,2150205761316855E05
324,-54,9,-1,4999999999999996,0,24999999999999994,-0,04166666666666665,0,0069444444444444415,-0,001157407407407407,0,00019290123456790114,-3,2150205761316855E-05

Outras maneiras de resolver

Sequências geométricas

Explicação passo a passo

1. Encontrar a razão comum

Encontrar a razão comum ao dividir qualquer termo na sequência pelo termo precedente:

a2a1=54324=0,16666666666666666

a3a2=954=0,16666666666666666

A razão comum (r) da sequência é constante e é igual à diferença entre o quociente de dois termos consecutivos.
r=0,16666666666666666

2. Encontrar a soma

5 passos adicionais

sn=a*((1-rn)/(1-r))

Para encontrar a soma da série, introduz o primeiro termo: a=324, a razão comum: r=0,16666666666666666 e o número de elementos n=3 na fórmula de soma da série geométrica:

s3=324*((1--0,166666666666666663)/(1--0,16666666666666666))

s3=324*((1--0,0046296296296296285)/(1--0,16666666666666666))

s3=324*(1,0046296296296295/(1--0,16666666666666666))

s3=324*(1,0046296296296295/1,1666666666666667)

s3=3240,8611111111111109

s3=278,99999999999994

3. Encontrar a forma geral

an=arn1

Para encontrar a forma geral das séries, introduz o primeiro termo: a=324 e a razão comum: r=0,16666666666666666 na fórmula para séries geométricas:

an=3240,16666666666666666n1

4. Encontrar o enésimo termo

Utilizar a forma geral para encontrar o enésimo termo

a1=324

a2=a1·rn1=3240,1666666666666666621=3240,166666666666666661=3240,16666666666666666=54

a3=a1·rn1=3240,1666666666666666631=3240,166666666666666662=3240,027777777777777776=9

a4=a1·rn1=3240,1666666666666666641=3240,166666666666666663=3240,0046296296296296285=1,4999999999999996

a5=a1·rn1=3240,1666666666666666651=3240,166666666666666664=3240,0007716049382716048=0,24999999999999994

a6=a1·rn1=3240,1666666666666666661=3240,166666666666666665=3240,00012860082304526745=0,04166666666666665

a7=a1·rn1=3240,1666666666666666671=3240,166666666666666666=3242,1433470507544573E05=0,0069444444444444415

a8=a1·rn1=3240,1666666666666666681=3240,166666666666666667=3243,5722450845907622E06=0,001157407407407407

a9=a1·rn1=3240,1666666666666666691=3240,166666666666666668=3245,95374180765127E07=0,00019290123456790114

a10=a1·rn1=3240,16666666666666666101=3240,166666666666666669=3249,922903012752117E08=3,2150205761316855E05

Porque aprender isto

Sequências geométricas são comumente usadas para explicar conceitos em matemática, física, engenharia, biologia, economia, ciência da computação, finanças e mais, tornando-as uma ferramenta muito útil para ter em nossas caixas de ferramentas. Uma das aplicações mais comuns de sequências geométricas, por exemplo, é calcular juros compostos ganhos ou não pagos, uma atividade geralmente associada à finanças, que pode significar ganhar ou perder muito dinheiro! Outras aplicações incluem, mas certamente não estão limitadas a, calcular a probabilidade, medir a radioatividade ao longo do tempo e desenhar edifícios.