Введи уравнение или задачу
Подключенная камера не распознана!

Решение - Геометрические прогрессии

Знаменатель прогрессии: r=84
r=84
Сумма данной прогрессии: s=85
s=-85
Общий вид данной прогрессии: an=184n1
a_n=-1*84^(n-1)
n-й член данной прогрессии: 1,84,7056,592704,49787136,4182119424,351298031616,29509034655744,2478758911082496,2,0821574853092966E+17
-1,-84,-7056,-592704,-49787136,-4182119424,-351298031616,-29509034655744,-2478758911082496,-2,0821574853092966E+17

Другие способы решения

Геометрические прогрессии

Пошаговое объяснение

1. Найти знаменатель прогрессии

Найти знаменатель прогрессии, разделив любой член последовательности на член, стоящий перед ним:

a2a1=841=84

Знаменатель (r) последовательности не меняется и равен частному двух последовательных членов.
r=84

2. Найти сумму

5 дополнительных шагов

sn=a*((1-rn)/(1-r))

Чтобы найти сумму прогрессии, необходимо подставить первый член a=1, знаменатель r=84 и количество членов n=2 в формулу суммы геометрической прогрессии:

s2=-1*((1-842)/(1-84))

s2=-1*((1-7056)/(1-84))

s2=-1*(-7055/(1-84))

s2=-1*(-7055/-83)

s2=185

s2=85

3. Найти общий вид

an=arn1

Чтобы найти общий вид последовательности, необходимо подставить первый член a=1 и знаменатель r=84 в формулу геометрической прогрессии:

an=184n1

4. Найти n-й член

Использовать общий вид, чтобы найти n-й член

a1=1

a2=a1·rn1=18421=1841=184=84

a3=a1·rn1=18431=1842=17056=7056

a4=a1·rn1=18441=1843=1592704=592704

a5=a1·rn1=18451=1844=149787136=49787136

a6=a1·rn1=18461=1845=14182119424=4182119424

a7=a1·rn1=18471=1846=1351298031616=351298031616

a8=a1·rn1=18481=1847=129509034655744=29509034655744

a9=a1·rn1=18491=1848=12478758911082496=2478758911082496

a10=a1·rn1=184101=1849=12,0821574853092966E+17=2,0821574853092966E+17

Зачем это учить

Геометрические последовательности часто используются для объяснения концепций в математике, физике, инженерии, биологии, экономике, информатике, финансах и т.д., что делает их очень полезным инструментом в нашем арсенале. Одно из самых общих применений геометрических последовательностей, например, - это расчет начисленных или неоплаченных процентов по сложным процентах, активность, наиболее часто связанная с финансами, которая может означать получение или потерю большого количества денег! Другие применения включают, но, конечно, не ограничиваются, расчетом вероятности, измерением радиоактивности со временем и проектированием зданий.