Введи уравнение или задачу
Подключенная камера не распознана!

Решение - Геометрические прогрессии

Знаменатель прогрессии: r=2
r=-2
Сумма данной прогрессии: s=1920
s=-1920
Общий вид данной прогрессии: an=6402n1
a_n=-640*-2^(n-1)
n-й член данной прогрессии: 640,1280,2560,5120,10240,20480,40960,81920,163840,327680
-640,1280,-2560,5120,-10240,20480,-40960,81920,-163840,327680

Другие способы решения

Геометрические прогрессии

Пошаговое объяснение

1. Найти знаменатель прогрессии

Найти знаменатель прогрессии, разделив любой член последовательности на член, стоящий перед ним:

a2a1=1280640=2

a3a2=25601280=2

Знаменатель (r) последовательности не меняется и равен частному двух последовательных членов.
r=2

2. Найти сумму

5 дополнительных шагов

sn=a*((1-rn)/(1-r))

Чтобы найти сумму прогрессии, необходимо подставить первый член a=640, знаменатель r=2 и количество членов n=3 в формулу суммы геометрической прогрессии:

s3=-640*((1--23)/(1--2))

s3=-640*((1--8)/(1--2))

s3=-640*(9/(1--2))

s3=-640*(9/3)

s3=6403

s3=1920

3. Найти общий вид

an=arn1

Чтобы найти общий вид последовательности, необходимо подставить первый член a=640 и знаменатель r=2 в формулу геометрической прогрессии:

an=6402n1

4. Найти n-й член

Использовать общий вид, чтобы найти n-й член

a1=640

a2=a1·rn1=640221=64021=6402=1280

a3=a1·rn1=640231=64022=6404=2560

a4=a1·rn1=640241=64023=6408=5120

a5=a1·rn1=640251=64024=64016=10240

a6=a1·rn1=640261=64025=64032=20480

a7=a1·rn1=640271=64026=64064=40960

a8=a1·rn1=640281=64027=640128=81920

a9=a1·rn1=640291=64028=640256=163840

a10=a1·rn1=6402101=64029=640512=327680

Зачем это учить

Геометрические последовательности часто используются для объяснения концепций в математике, физике, инженерии, биологии, экономике, информатике, финансах и т.д., что делает их очень полезным инструментом в нашем арсенале. Одно из самых общих применений геометрических последовательностей, например, - это расчет начисленных или неоплаченных процентов по сложным процентах, активность, наиболее часто связанная с финансами, которая может означать получение или потерю большого количества денег! Другие применения включают, но, конечно, не ограничиваются, расчетом вероятности, измерением радиоактивности со временем и проектированием зданий.