Введи уравнение или задачу
Подключенная камера не распознана!

Решение - Геометрические прогрессии

Знаменатель прогрессии: r=0,9135802469135802
r=0,9135802469135802
Сумма данной прогрессии: s=155
s=-155
Общий вид данной прогрессии: an=810,9135802469135802n1
a_n=-81*0,9135802469135802^(n-1)
n-й член данной прогрессии: 81,74,67,60493827160492,61,762536198750176,56,42503307046312,51,548795644620625,47,0939614531102,43,02411293247105,39,30597971608466,35,909166654200796
-81,-74,-67,60493827160492,-61,762536198750176,-56,42503307046312,-51,548795644620625,-47,0939614531102,-43,02411293247105,-39,30597971608466,-35,909166654200796

Другие способы решения

Геометрические прогрессии

Пошаговое объяснение

1. Найти знаменатель прогрессии

Найти знаменатель прогрессии, разделив любой член последовательности на член, стоящий перед ним:

a2a1=7481=0,9135802469135802

Знаменатель (r) последовательности не меняется и равен частному двух последовательных членов.
r=0,9135802469135802

2. Найти сумму

5 дополнительных шагов

sn=a*((1-rn)/(1-r))

Чтобы найти сумму прогрессии, необходимо подставить первый член a=81, знаменатель r=0,9135802469135802 и количество членов n=2 в формулу суммы геометрической прогрессии:

s2=-81*((1-0,91358024691358022)/(1-0,9135802469135802))

s2=-81*((1-0,8346288675506781)/(1-0,9135802469135802))

s2=-81*(0,1653711324493219/(1-0,9135802469135802))

s2=-81*(0,1653711324493219/0,0864197530864198)

s2=811,9135802469135808

s2=155,00000000000003

3. Найти общий вид

an=arn1

Чтобы найти общий вид последовательности, необходимо подставить первый член a=81 и знаменатель r=0,9135802469135802 в формулу геометрической прогрессии:

an=810,9135802469135802n1

4. Найти n-й член

Использовать общий вид, чтобы найти n-й член

a1=81

a2=a1·rn1=810,913580246913580221=810,91358024691358021=810,9135802469135802=74

a3=a1·rn1=810,913580246913580231=810,91358024691358022=810,8346288675506781=67,60493827160492

a4=a1·rn1=810,913580246913580241=810,91358024691358023=810,7625004468981503=61,762536198750176

a5=a1·rn1=810,913580246913580251=810,91358024691358024=810,6966053465489275=56,42503307046312

a6=a1·rn1=810,913580246913580261=810,91358024691358025=810,6364048845014892=51,548795644620625

a7=a1·rn1=810,913580246913580271=810,91358024691358026=810,581406931519879=47,0939614531102

a8=a1·rn1=810,913580246913580281=810,91358024691358027=810,5311618880551982=43,02411293247105

a9=a1·rn1=810,913580246913580291=810,91358024691358028=810,48525900884055134=39,30597971608466

a10=a1·rn1=810,9135802469135802101=810,91358024691358029=810,44332304511359005=35,909166654200796

Зачем это учить

Геометрические последовательности часто используются для объяснения концепций в математике, физике, инженерии, биологии, экономике, информатике, финансах и т.д., что делает их очень полезным инструментом в нашем арсенале. Одно из самых общих применений геометрических последовательностей, например, - это расчет начисленных или неоплаченных процентов по сложным процентах, активность, наиболее часто связанная с финансами, которая может означать получение или потерю большого количества денег! Другие применения включают, но, конечно, не ограничиваются, расчетом вероятности, измерением радиоактивности со временем и проектированием зданий.