Введи уравнение или задачу
Подключенная камера не распознана!

Решение - Геометрические прогрессии

Знаменатель прогрессии: r=2
r=-2
Сумма данной прогрессии: s=42
s=42
Общий вид данной прогрессии: an=142n1
a_n=14*-2^(n-1)
n-й член данной прогрессии: 14,28,56,112,224,448,896,1792,3584,7168
14,-28,56,-112,224,-448,896,-1792,3584,-7168

Другие способы решения

Геометрические прогрессии

Пошаговое объяснение

1. Найти знаменатель прогрессии

Найти знаменатель прогрессии, разделив любой член последовательности на член, стоящий перед ним:

a2a1=2814=2

a3a2=5628=2

Знаменатель (r) последовательности не меняется и равен частному двух последовательных членов.
r=2

2. Найти сумму

5 дополнительных шагов

sn=a*((1-rn)/(1-r))

Чтобы найти сумму прогрессии, необходимо подставить первый член a=14, знаменатель r=2 и количество членов n=3 в формулу суммы геометрической прогрессии:

s3=14*((1--23)/(1--2))

s3=14*((1--8)/(1--2))

s3=14*(9/(1--2))

s3=14*(9/3)

s3=143

s3=42

3. Найти общий вид

an=arn1

Чтобы найти общий вид последовательности, необходимо подставить первый член a=14 и знаменатель r=2 в формулу геометрической прогрессии:

an=142n1

4. Найти n-й член

Использовать общий вид, чтобы найти n-й член

a1=14

a2=a1·rn1=14221=1421=142=28

a3=a1·rn1=14231=1422=144=56

a4=a1·rn1=14241=1423=148=112

a5=a1·rn1=14251=1424=1416=224

a6=a1·rn1=14261=1425=1432=448

a7=a1·rn1=14271=1426=1464=896

a8=a1·rn1=14281=1427=14128=1792

a9=a1·rn1=14291=1428=14256=3584

a10=a1·rn1=142101=1429=14512=7168

Зачем это учить

Геометрические последовательности часто используются для объяснения концепций в математике, физике, инженерии, биологии, экономике, информатике, финансах и т.д., что делает их очень полезным инструментом в нашем арсенале. Одно из самых общих применений геометрических последовательностей, например, - это расчет начисленных или неоплаченных процентов по сложным процентах, активность, наиболее часто связанная с финансами, которая может означать получение или потерю большого количества денег! Другие применения включают, но, конечно, не ограничиваются, расчетом вероятности, измерением радиоактивности со временем и проектированием зданий.