Введи уравнение или задачу
Подключенная камера не распознана!

Решение - Геометрические прогрессии

Знаменатель прогрессии: r=0,14285714285714285
r=-0,14285714285714285
Сумма данной прогрессии: s=215
s=215
Общий вид данной прогрессии: an=2450,14285714285714285n1
a_n=245*-0,14285714285714285^(n-1)
n-й член данной прогрессии: 245,35,5,0,7142857142857142,0,10204081632653059,0,014577259475218655,0,0020824656393169504,0,0002974950913309929,4,2499298761570416E05,6,071328394510059E06
245,-35,5,-0,7142857142857142,0,10204081632653059,-0,014577259475218655,0,0020824656393169504,-0,0002974950913309929,4,2499298761570416E-05,-6,071328394510059E-06

Другие способы решения

Геометрические прогрессии

Пошаговое объяснение

1. Найти знаменатель прогрессии

Найти знаменатель прогрессии, разделив любой член последовательности на член, стоящий перед ним:

a2a1=35245=0,14285714285714285

a3a2=535=0,14285714285714285

Знаменатель (r) последовательности не меняется и равен частному двух последовательных членов.
r=0,14285714285714285

2. Найти сумму

5 дополнительных шагов

sn=a*((1-rn)/(1-r))

Чтобы найти сумму прогрессии, необходимо подставить первый член a=245, знаменатель r=0,14285714285714285 и количество членов n=3 в формулу суммы геометрической прогрессии:

s3=245*((1--0,142857142857142853)/(1--0,14285714285714285))

s3=245*((1--0,0029154518950437313)/(1--0,14285714285714285))

s3=245*(1,0029154518950438/(1--0,14285714285714285))

s3=245*(1,0029154518950438/1,1428571428571428)

s3=2450,8775510204081634

s3=215,00000000000003

3. Найти общий вид

an=arn1

Чтобы найти общий вид последовательности, необходимо подставить первый член a=245 и знаменатель r=0,14285714285714285 в формулу геометрической прогрессии:

an=2450,14285714285714285n1

4. Найти n-й член

Использовать общий вид, чтобы найти n-й член

a1=245

a2=a1·rn1=2450,1428571428571428521=2450,142857142857142851=2450,14285714285714285=35

a3=a1·rn1=2450,1428571428571428531=2450,142857142857142852=2450,02040816326530612=5

a4=a1·rn1=2450,1428571428571428541=2450,142857142857142853=2450,0029154518950437313=0,7142857142857142

a5=a1·rn1=2450,1428571428571428551=2450,142857142857142854=2450,00041649312786339016=0,10204081632653059

a6=a1·rn1=2450,1428571428571428561=2450,142857142857142855=2455,949901826619859E05=0,014577259475218655

a7=a1·rn1=2450,1428571428571428571=2450,142857142857142856=2458,499859752314083E06=0,0020824656393169504

a8=a1·rn1=2450,1428571428571428581=2450,142857142857142857=2451,214265678902012E06=0,0002974950913309929

a9=a1·rn1=2450,1428571428571428591=2450,142857142857142858=2451,7346652555743026E07=4,2499298761570416E05

a10=a1·rn1=2450,14285714285714285101=2450,142857142857142859=2452,4780932222490035E08=6,071328394510059E06

Зачем это учить

Геометрические последовательности часто используются для объяснения концепций в математике, физике, инженерии, биологии, экономике, информатике, финансах и т.д., что делает их очень полезным инструментом в нашем арсенале. Одно из самых общих применений геометрических последовательностей, например, - это расчет начисленных или неоплаченных процентов по сложным процентах, активность, наиболее часто связанная с финансами, которая может означать получение или потерю большого количества денег! Другие применения включают, но, конечно, не ограничиваются, расчетом вероятности, измерением радиоактивности со временем и проектированием зданий.