Ingiza equation au tatizo
Ingizo la kamera haitambuliki!

Ufumbuzi - Mfulululizo wa kijiometri

Uwiano wa kawaida ni: r=0.1935483870967742
r=0.1935483870967742
Jumla ya mfululizo huu ni: s=148
s=-148
Muundo mkuu wa mfululizo huu ni: an=1240.1935483870967742n1
a_n=-124*0.1935483870967742^(n-1)
Neno la n la mfululizo huu ni: 124,24,4.64516129032258,0.8990634755463058,0.17401228558960757,0.03367979721089179,0.00651867042791454,0.001261678147338298,0.0002441957704525738,4.7263697506949766E05
-124,-24,-4.64516129032258,-0.8990634755463058,-0.17401228558960757,-0.03367979721089179,-0.00651867042791454,-0.001261678147338298,-0.0002441957704525738,-4.7263697506949766E-05

Njia Zingine za Kutatua

Mfulululizo wa kijiometri

Maelezo kwa hatua

1. Pata uwiano wa kawaida

Pata uwiano wa kawaida kwa kugawanya neno lolote la mlolongo kwa neno lililotangulia:

a2a1=24124=0.1935483870967742

Uwiano wa kawaida (r) wa mlolongo ni thabiti na unasawa na sehemu ya maneno mawili yanayofuatana.
r=0.1935483870967742

2. Pata jumla

5 ziada steps

sn=a*((1-rn)/(1-r))

Kupata jumla ya mfululizo, chomeka neno la kwanza: a=124, uwiano wa kawaida: r=0.1935483870967742, na idadi ya vipengele n=2 katika fomula ya jumla ya mfululizo wa kijiometri:

s2=-124*((1-0.19354838709677422)/(1-0.1935483870967742))

s2=-124*((1-0.037460978147762745)/(1-0.1935483870967742))

s2=-124*(0.9625390218522373/(1-0.1935483870967742))

s2=-124*(0.9625390218522373/0.8064516129032258)

s2=1241.1935483870967742

s2=148

3. Pata muundo mkuu

an=arn1

Kupata muundo mkuu wa mfululizo, chomeka neno la kwanza: a=124 na uwiano wa kawaida: r=0.1935483870967742 katika fomula ya mfululizo wa kijiometri:

an=1240.1935483870967742n1

4. Pata neno la n

Tumia fomu kuu kupata kipimo cha nth

a1=124

a2=a1·rn1=1240.193548387096774221=1240.19354838709677421=1240.1935483870967742=24

a3=a1·rn1=1240.193548387096774231=1240.19354838709677422=1240.037460978147762745=4.64516129032258

a4=a1·rn1=1240.193548387096774241=1240.19354838709677423=1240.007250511899566983=0.8990634755463058

a5=a1·rn1=1240.193548387096774251=1240.19354838709677424=1240.0014033248837871579=0.17401228558960757

a6=a1·rn1=1240.193548387096774261=1240.19354838709677425=1240.00027161126782977246=0.03367979721089179

a7=a1·rn1=1240.193548387096774271=1240.19354838709677426=1245.256992280576242E05=0.00651867042791454

a8=a1·rn1=1240.193548387096774281=1240.19354838709677427=1241.0174823768857242E05=0.001261678147338298

a9=a1·rn1=1240.193548387096774291=1240.19354838709677428=1241.9693207294562404E06=0.0002441957704525738

a10=a1·rn1=1240.1935483870967742101=1240.19354838709677429=1243.811588508624981E07=4.7263697506949766E05

Kwa nini kujifunza hii

Mfululizo wa kijiometri hutumika kwa kawaida kuelezea dhana katika hisabati, fizikia, uhandisi, biolojia, uchumi, sayansi ya kompyuta, fedha, na zaidi, kufanya kuwa zana muhimu kuwa nayo katika vifaa vyetu. Moja ya matumizi ya kawaida ya safu za kijiometri, kwa mfano, ni kuhesabu riba iliyopatikana au isiyo kulipwa, shughuli inayohusishwa sana na fedha ambayo inaweza kumaanisha kupata au kupoteza pesa nyingi! Matumizi mengine ni pamoja na, lakini kwa hakika hayajazuiliwa, kuhesabu uwezekano, kupima radioactivity kwa muda, na kubuni majengo.