సమీకరణము లేదా ప్రశ్నను నమోదు చేయండి
కెమెరా ఇన్‌పుట్‌ను గుర్తించలేదు!

పరిష్కారం - జ్యామితీ నిర్ణయాలు

పునరావృత్తి అనుపాతమే: r=0.3333333333333333
r=-0.3333333333333333
ఈ శ్రేణియొక్క మొత్తమే: s=56
s=56
ఈ శ్రేణి యొక్క సామాన్య రూపం: an=720.3333333333333333n1
a_n=72*-0.3333333333333333^(n-1)
ఈ శ్రేణి యొక్క నథ్ పదమే: 72,24,8,2.666666666666666,0.8888888888888887,0.29629629629629617,0.0987654320987654,0.032921810699588466,0.01097393689986282,0.00365797896662094
72,-24,8,-2.666666666666666,0.8888888888888887,-0.29629629629629617,0.0987654320987654,-0.032921810699588466,0.01097393689986282,-0.00365797896662094

పరిష్కరించడానికి ఇతర మార్గాలు

జ్యామితీ నిర్ణయాలు

దశాదశగా వివరణ

1. పునరావృత్తి అనుపాతాన్ని కనుగొనండి

శ్రేణిలోని ఏదైనా పదాన్ని దాంతో ముందువచ్చే పదాన్ని భాగస్వామి చేయి పునరావృత్తి అనుపాతాన్ని కనుగొనండి:

a2a1=2472=0.3333333333333333

a3a2=824=0.3333333333333333

శ్రేణికి పునరావృత్తి అనుపాతము (r) నిరంతరం ఉండి మరియు రేందు క్రమక పదాల భాగస్ఫూర్తిని సమానం ఉంది.
r=0.3333333333333333

2. మొత్తాన్ని కనుగొనండి

5 అదనపు steps

sn=a*((1-rn)/(1-r))

శ్రేణి యొక్క మొత్తాన్ని కనుగొనడానికి, మొదటి పదాన్ని: a=72, పునరావృత్తి అనుపాతాన్ని: r=0.3333333333333333, మరియు అంశాల సంఖ్యను n=3 జామితీయ శ్రేణియొక్క మొత్త సూత్రానికి ప్లగ్ చేయండి:

s3=72*((1--0.33333333333333333)/(1--0.3333333333333333))

s3=72*((1--0.03703703703703703)/(1--0.3333333333333333))

s3=72*(1.037037037037037/(1--0.3333333333333333))

s3=72*(1.037037037037037/1.3333333333333333)

s3=720.7777777777777778

s3=56

3. సామాన్య రూపాన్ని కనుగొనండి

an=arn1

శ్రేణికి సామాన్య రూపాన్ని కనుగొనడానికి, మొదటి పదాన్ని: a=72 మరియు పునరావృత్తి అనుపాతాన్ని: r=0.3333333333333333 జామితీయ శ్రేణుల సూత్రానికి ప్లగ్ చేయండి:

an=720.3333333333333333n1

4. nవ పదాన్ని కనుగొనండి

సాధారణ రూపాన్ని ఉపయోగించి ని పదాన్ని కనుగొనండి

a1=72

a2=a1·rn1=720.333333333333333321=720.33333333333333331=720.3333333333333333=24

a3=a1·rn1=720.333333333333333331=720.33333333333333332=720.1111111111111111=8

a4=a1·rn1=720.333333333333333341=720.33333333333333333=720.03703703703703703=2.666666666666666

a5=a1·rn1=720.333333333333333351=720.33333333333333334=720.012345679012345677=0.8888888888888887

a6=a1·rn1=720.333333333333333361=720.33333333333333335=720.004115226337448558=0.29629629629629617

a7=a1·rn1=720.333333333333333371=720.33333333333333336=720.0013717421124828527=0.0987654320987654

a8=a1·rn1=720.333333333333333381=720.33333333333333337=720.00045724737082761756=0.032921810699588466

a9=a1·rn1=720.333333333333333391=720.33333333333333338=720.0001524157902758725=0.01097393689986282

a10=a1·rn1=720.3333333333333333101=720.33333333333333339=725.0805263425290837E05=0.00365797896662094

ఇది ఎందుకు నేర్చుకోవాలి

జియోమెట్రిక్ సరణులను గణితం, భౌతికశాస్త్రం, యంత్రశాస్త్రం, జీవశాస్త్రం, ఆర్ధికశాస్త్రం, కంప్యూటర్ విజ్ఞానం, ఫైనాన్స్ మరియు మరిన్ని ప్రాంతాల్లో ఆధారంగాను ఉపయోగిస్తారు, దీని వల్ల మన పనిజేసే ఎవరైనా ఉపకరణంలో దీనిని ఉంచుకునేందుకు అద్భుతంగా ఉపయోగించవచ్చు. ఉదాహరణకు, జియోమెట్రిక్ సరణుల అత్యధిక అన్వయున్న వినియోగాలలో ఒకటి సంచిత వాగని లేదా చెల్లనివ్వనే రెండు భాగస్వామ్యం కనుగొణిస్తుంది, ఇది సాధారణంగా ఫైనాన్స్‌తో అనుసంధానించబడిన ఒక చర్య అయిన సంపాదక లేదా ఈ మొత్తాన్ని పోయేదే! ఇతర వినియోగాలు నిర్ణయకులకు, సమయం పటంల రేడియో సహజతలను ఖర్చుచేసేలా మరియు భవనాలను డిజైన్ చేసేలా ఉన్నాయి, కానీ, కాకా పరిమితికి పరిమితం కాదు.

పదాలు మరియు విషయాలు