Введіть рівняння або задачу
Камера не розпізнає вхід!

Рішення - Геометричні прогресії

Спільний множник дорівнює: r=0,6
r=-0,6
Сума цього ряду дорівнює: s=75
s=75
Загальна форма цього ряду: an=1000,6n1
a_n=100*-0,6^(n-1)
n-ий член цього ряду дорівнює: 100,60,36,21,599999999999998,12,959999999999999,7,775999999999998,4,665599999999999,2,799359999999999,1,6796159999999993,1,0077695999999996
100,-60,36,-21,599999999999998,12,959999999999999,-7,775999999999998,4,665599999999999,-2,799359999999999,1,6796159999999993,-1,0077695999999996

Інші способи розв'язку

Геометричні прогресії

Покрокове пояснення

1. Знайдіть спільний множник

Знайдіть спільний множник, поділивши будь-який член послідовності на попередній член:

a2a1=60100=0,6

a3a2=3660=0,6

Спільний множник (r) послідовності є сталим і дорівнює частці двох послідовних членів.
r=0,6

2. Знайдіть суму

5 додаткові steps

sn=a*((1-rn)/(1-r))

Щоб знайти суму ряду, замініть перший член: a=100, спільний множник: r=0,6, і кількість елементів n=3 у формулу суми геометричного ряду:

s3=100*((1--0,63)/(1--0,6))

s3=100*((1--0,21599999999999997)/(1--0,6))

s3=100*(1,216/(1--0,6))

s3=100*(1,216/1,6)

s3=1000,7599999999999999

s3=75,99999999999999

3. Знайдіть загальну форму

an=arn1

Щоб знайти загальну форму ряду, вставте перший член: a=100 і спільний множник: r=0,6 у формулу геометричного ряду:

an=1000,6n1

4. Знайдіть n-ий член

Використовуйте загальну форму, щоб знайти n-й член

a1=100

a2=a1·rn1=1000,621=1000,61=1000,6=60

a3=a1·rn1=1000,631=1000,62=1000,36=36

a4=a1·rn1=1000,641=1000,63=1000,21599999999999997=21,599999999999998

a5=a1·rn1=1000,651=1000,64=1000,1296=12,959999999999999

a6=a1·rn1=1000,661=1000,65=1000,07775999999999998=7,775999999999998

a7=a1·rn1=1000,671=1000,66=1000,04665599999999999=4,665599999999999

a8=a1·rn1=1000,681=1000,67=1000,027993599999999993=2,799359999999999

a9=a1·rn1=1000,691=1000,68=1000,016796159999999994=1,6796159999999993

a10=a1·rn1=1000,6101=1000,69=1000,010077695999999997=1,0077695999999996

Чому вчити це

Геометричні прогресії часто використовуються для пояснення концепцій в математиці, фізиці, інженерії, біології, економіці, інформатиці, фінансах і багато чому іншому, що робить їх дуже корисним інструментом в наших наборах інструментів. Одним з найбільш поширених застосувань геометричних прогресій, наприклад, є розрахунок нарахованих або невиплачених сложних відсотків, діяльність, яка найчастіше асоціюється з фінансами, що може означати отримання або втрату багатьох грошей! Інші застосування включають, але це зовсім не обмежується, розрахунок ймовірності, вимірювання радіоактивності з часом та проектування будівель.