Введіть рівняння або задачу
Камера не розпізнає вхід!

Рішення - Рівняння з абсолютною величиною

Точна форма: x=-726,738
x=-\frac{7}{26} , \frac{7}{38}
Десятковий формат: x=0,269,0,184
x=-0,269 , 0,184

Інші способи розв'язку

Рівняння з абсолютною величиною

Покрокове пояснення

1. Запишіть рівняння без модуля

Використовуйте правила:
|x|=|y|x=±y та |x|=|y|±x=y
щоб записати всі чотири варіанти рівняння
|32x|=|6x7|
без модулів:

|x|=|y||32x|=|6x7|
x=+y(32x)=(6x7)
x=y(32x)=(6x7)
+x=y(32x)=(6x7)
x=y(32x)=(6x7)

Коли спрощують, рівняння x=+y та +x=y стають однаковими, а рівняння x=y та x=y також стають однаковими, тому у нас вийде тільки 2 рівняння:

|x|=|y||32x|=|6x7|
x=+y , +x=y(32x)=(6x7)
x=y , x=y(32x)=(6x7)

2. Розв’яжіть два рівняння для x

5 додаткові steps

32x=(6x-7)

Відніміть від обох сторін:

(32x)-6x=(6x-7)-6x

Спростіть арифметику:

26x=(6x-7)-6x

Зберіть подібні члени:

26x=(6x-6x)-7

Спростіть арифметику:

26x=7

Поділіть обидві сторони на :

(26x)26=-726

Спростіть дроб:

x=-726

6 додаткові steps

32x=-(6x-7)

Розширте дужки:

32x=6x+7

Додайте до обох сторін:

(32x)+6x=(-6x+7)+6x

Спростіть арифметику:

38x=(-6x+7)+6x

Зберіть подібні члени:

38x=(-6x+6x)+7

Спростіть арифметику:

38x=7

Поділіть обидві сторони на :

(38x)38=738

Спростіть дроб:

x=738

3. Перелічіть рішення

x=-726,738
(2 рішення(ів))

4. Створіть графік

Кожна лінія представляє функцію однієї сторони рівняння:
y=|32x|
y=|6x7|
Рівняння є правдивим там, де дві лінії перетинаються.

Чому вчити це

Ми зустрічаємося з абсолютними значеннями майже щодня. Наприклад: Якщо ви йдете до школи 3 милі, чи йдете ви мінус 3 милі, коли повертаєтесь додому? Відповідь отримаєте - ні, тому що відстані використовують абсолютне значення. Абсолютне значення відстані між домом і школою становить 3 милі, туди чи назад.
Коротше кажучи, абсолютні значення допомагають нам працювати з такими поняттями, як відстань, діапазони можливих значень та відхилення від заданого значення.