Введіть рівняння або задачу
Камера не розпізнає вхід!

Рішення - Статистика

Сума: 48
48
Середнє арифметичне: x̄=12
x̄=12
Медіана: 10
10
Діапазон: 20
20
Дисперсія: s2=88667
s^2=88 667
Стандартне відхилення: s=9416
s=9 416

Інші способи розв'язку

Статистика

Покрокове пояснення

1. Знайдіть суму

Додайте всі числа:

4+24+15+5=48

Сума дорівнює 48

2. Знайдіть середнє арифметичне

Поділіть суму на кількість членів:

Сума
48
Кількість членів
4

x̄=12=12

Середнє арифметичне дорівнює 12

3. Знайдіть медіану

Впорядкуйте числа за зростанням:
4,5,15,24

Порахуйте кількість термінів:
Існує (4) термінів

Оскільки кількість елементів є парною, слід визначити два середніх елементи:
4,5,15,24

Щоб знайти значення, що знаходиться на півдорозі між двома середніми термінами, слід додати їх та поділити на 2:
(5+15)/2=20/2=10

Медіана дорівнює 10

4. Знайдіть розмах

Щоб знайти розмах, відніміть найнижче значення від найвищого.

Найвище значення дорівнює 24
Найнижче значення дорівнює 4

244=20

Діапазон дорівнює 20

5. Знайдіть дисперсію

Щоб знайти дисперсію, знайдіть різницю між кожним членом та середнім арифметичним, возвести результату в квадрат, скласти всі квадратні результати, і поділити суму на кількість членів мінус 1.

Середнє арифметичне дорівнює 12

Щоб отримати квадратні відмінності, відніміть середнє значення від кожного терміну та піднесіть результат до квадрату:

(412)2=64

(2412)2=144

(1512)2=9

(512)2=49

Щоб отримати дисперсію вибірки, складіть квадратні відмінності та поділіть їхню суму на кількість термінів мінус 1

Сума:
64+144+9+49=266
Кількість термінів:
4
Кількість термінів мінус 1:
3

Дисперсія:
2663=88 667

Дисперсія вибірки (s2) дорівнює 88,667

6. Знайдіть стандартне відхилення

Стандартне відхилення дорівнює квадратному кореню з дисперсії. Саме тому дисперсію зазвичай представляють у вигляді квадратної змінної.

Дисперсія: s2=88,667

Знайдіть квадратний корінь:
s=(88,667)=9416

Стандартне відхилення (s) дорівнює 9 416

Чому вчити це

Наука статистики займається збором, аналізом, інтерпретацією та представленням даних, особливо в контекстах невизначеності та варіації. Розуміння навіть найпростіших концепцій в статистиці допоможе нам краще обробляти та розуміти інформацію, яку ми зустрічаємо в повсякденному житті! Крім того, тепер збирається більше даних, ніж будь-коли в усій людській історії. З підвищенням потужності комп'ютерів вони дозволили легше аналізувати та інтерпретувати все більші набори даних. Через це статистичний аналіз стає все більш важливим в багатьох областях, дозволяючи урядам і компаніям повністю розуміти та реагувати на дані.