Введіть рівняння або задачу
Камера не розпізнає вхід!

Рішення - Статистика

Сума: 26
26
Середнє арифметичне: x̄=6,5
x̄=6,5
Медіана: 6,5
6,5
Діапазон: 5
5
Дисперсія: s2=5667
s^2=5 667
Стандартне відхилення: s=2381
s=2 381

Інші способи розв'язку

Статистика

Покрокове пояснення

1. Знайдіть суму

Додайте всі числа:

5+4+9+8=26

Сума дорівнює 26

2. Знайдіть середнє арифметичне

Поділіть суму на кількість членів:

Сума
26
Кількість членів
4

x̄=132=6,5

Середнє арифметичне дорівнює 6,5

3. Знайдіть медіану

Впорядкуйте числа за зростанням:
4,5,8,9

Порахуйте кількість термінів:
Існує (4) термінів

Оскільки кількість елементів є парною, слід визначити два середніх елементи:
4,5,8,9

Щоб знайти значення, що знаходиться на півдорозі між двома середніми термінами, слід додати їх та поділити на 2:
(5+8)/2=13/2=6,5

Медіана дорівнює 6,5

4. Знайдіть розмах

Щоб знайти розмах, відніміть найнижче значення від найвищого.

Найвище значення дорівнює 9
Найнижче значення дорівнює 4

94=5

Діапазон дорівнює 5

5. Знайдіть дисперсію

Щоб знайти дисперсію, знайдіть різницю між кожним членом та середнім арифметичним, возвести результату в квадрат, скласти всі квадратні результати, і поділити суму на кількість членів мінус 1.

Середнє арифметичне дорівнює 6,5

Щоб отримати квадратні відмінності, відніміть середнє значення від кожного терміну та піднесіть результат до квадрату:

(56,5)2=2,25

(46,5)2=6,25

(96,5)2=6,25

(86,5)2=2,25

Щоб отримати дисперсію вибірки, складіть квадратні відмінності та поділіть їхню суму на кількість термінів мінус 1

Сума:
2,25+6,25+6,25+2,25=17,00
Кількість термінів:
4
Кількість термінів мінус 1:
3

Дисперсія:
17,003=5,667

Дисперсія вибірки (s2) дорівнює 5,667

6. Знайдіть стандартне відхилення

Стандартне відхилення дорівнює квадратному кореню з дисперсії. Саме тому дисперсію зазвичай представляють у вигляді квадратної змінної.

Дисперсія: s2=5,667

Знайдіть квадратний корінь:
s=(5,667)=2381

Стандартне відхилення (s) дорівнює 2 381

Чому вчити це

Наука статистики займається збором, аналізом, інтерпретацією та представленням даних, особливо в контекстах невизначеності та варіації. Розуміння навіть найпростіших концепцій в статистиці допоможе нам краще обробляти та розуміти інформацію, яку ми зустрічаємо в повсякденному житті! Крім того, тепер збирається більше даних, ніж будь-коли в усій людській історії. З підвищенням потужності комп'ютерів вони дозволили легше аналізувати та інтерпретувати все більші набори даних. Через це статистичний аналіз стає все більш важливим в багатьох областях, дозволяючи урядам і компаніям повністю розуміти та реагувати на дані.