Введіть рівняння або задачу
Камера не розпізнає вхід!

Рішення - Статистика

Сума: 76
76
Середнє арифметичне: x̄=19
x̄=19
Медіана: 19
19
Діапазон: 14
14
Дисперсія: s2=38667
s^2=38 667
Стандартне відхилення: s=6218
s=6 218

Інші способи розв'язку

Статистика

Покрокове пояснення

1. Знайдіть суму

Додайте всі числа:

12+16+22+26=76

Сума дорівнює 76

2. Знайдіть середнє арифметичне

Поділіть суму на кількість членів:

Сума
76
Кількість членів
4

x̄=19=19

Середнє арифметичне дорівнює 19

3. Знайдіть медіану

Впорядкуйте числа за зростанням:
12,16,22,26

Порахуйте кількість термінів:
Існує (4) термінів

Оскільки кількість елементів є парною, слід визначити два середніх елементи:
12,16,22,26

Щоб знайти значення, що знаходиться на півдорозі між двома середніми термінами, слід додати їх та поділити на 2:
(16+22)/2=38/2=19

Медіана дорівнює 19

4. Знайдіть розмах

Щоб знайти розмах, відніміть найнижче значення від найвищого.

Найвище значення дорівнює 26
Найнижче значення дорівнює 12

2612=14

Діапазон дорівнює 14

5. Знайдіть дисперсію

Щоб знайти дисперсію, знайдіть різницю між кожним членом та середнім арифметичним, возвести результату в квадрат, скласти всі квадратні результати, і поділити суму на кількість членів мінус 1.

Середнє арифметичне дорівнює 19

Щоб отримати квадратні відмінності, відніміть середнє значення від кожного терміну та піднесіть результат до квадрату:

(1219)2=49

(1619)2=9

(2219)2=9

(2619)2=49

Щоб отримати дисперсію вибірки, складіть квадратні відмінності та поділіть їхню суму на кількість термінів мінус 1

Сума:
49+9+9+49=116
Кількість термінів:
4
Кількість термінів мінус 1:
3

Дисперсія:
1163=38 667

Дисперсія вибірки (s2) дорівнює 38,667

6. Знайдіть стандартне відхилення

Стандартне відхилення дорівнює квадратному кореню з дисперсії. Саме тому дисперсію зазвичай представляють у вигляді квадратної змінної.

Дисперсія: s2=38,667

Знайдіть квадратний корінь:
s=(38,667)=6218

Стандартне відхилення (s) дорівнює 6 218

Чому вчити це

Наука статистики займається збором, аналізом, інтерпретацією та представленням даних, особливо в контекстах невизначеності та варіації. Розуміння навіть найпростіших концепцій в статистиці допоможе нам краще обробляти та розуміти інформацію, яку ми зустрічаємо в повсякденному житті! Крім того, тепер збирається більше даних, ніж будь-коли в усій людській історії. З підвищенням потужності комп'ютерів вони дозволили легше аналізувати та інтерпретувати все більші набори даних. Через це статистичний аналіз стає все більш важливим в багатьох областях, дозволяючи урядам і компаніям повністю розуміти та реагувати на дані.