Введіть рівняння або задачу
Камера не розпізнає вхід!

Рішення - Статистика

Сума: 24
24
Середнє арифметичне: x̄=6
x̄=6
Медіана: 5
5
Діапазон: 10
10
Дисперсія: s2=18667
s^2=18 667
Стандартне відхилення: s=4321
s=4 321

Інші способи розв'язку

Статистика

Покрокове пояснення

1. Знайдіть суму

Додайте всі числа:

2+6+4+12=24

Сума дорівнює 24

2. Знайдіть середнє арифметичне

Поділіть суму на кількість членів:

Сума
24
Кількість членів
4

x̄=6=6

Середнє арифметичне дорівнює 6

3. Знайдіть медіану

Впорядкуйте числа за зростанням:
2,4,6,12

Порахуйте кількість термінів:
Існує (4) термінів

Оскільки кількість елементів є парною, слід визначити два середніх елементи:
2,4,6,12

Щоб знайти значення, що знаходиться на півдорозі між двома середніми термінами, слід додати їх та поділити на 2:
(4+6)/2=10/2=5

Медіана дорівнює 5

4. Знайдіть розмах

Щоб знайти розмах, відніміть найнижче значення від найвищого.

Найвище значення дорівнює 12
Найнижче значення дорівнює 2

122=10

Діапазон дорівнює 10

5. Знайдіть дисперсію

Щоб знайти дисперсію, знайдіть різницю між кожним членом та середнім арифметичним, возвести результату в квадрат, скласти всі квадратні результати, і поділити суму на кількість членів мінус 1.

Середнє арифметичне дорівнює 6

Щоб отримати квадратні відмінності, відніміть середнє значення від кожного терміну та піднесіть результат до квадрату:

(26)2=16

(66)2=0

(46)2=4

(126)2=36

Щоб отримати дисперсію вибірки, складіть квадратні відмінності та поділіть їхню суму на кількість термінів мінус 1

Сума:
16+0+4+36=56
Кількість термінів:
4
Кількість термінів мінус 1:
3

Дисперсія:
563=18 667

Дисперсія вибірки (s2) дорівнює 18,667

6. Знайдіть стандартне відхилення

Стандартне відхилення дорівнює квадратному кореню з дисперсії. Саме тому дисперсію зазвичай представляють у вигляді квадратної змінної.

Дисперсія: s2=18,667

Знайдіть квадратний корінь:
s=(18,667)=4321

Стандартне відхилення (s) дорівнює 4 321

Чому вчити це

Наука статистики займається збором, аналізом, інтерпретацією та представленням даних, особливо в контекстах невизначеності та варіації. Розуміння навіть найпростіших концепцій в статистиці допоможе нам краще обробляти та розуміти інформацію, яку ми зустрічаємо в повсякденному житті! Крім того, тепер збирається більше даних, ніж будь-коли в усій людській історії. З підвищенням потужності комп'ютерів вони дозволили легше аналізувати та інтерпретувати все більші набори даних. Через це статистичний аналіз стає все більш важливим в багатьох областях, дозволяючи урядам і компаніям повністю розуміти та реагувати на дані.