Введіть рівняння або задачу
Камера не розпізнає вхід!

Рішення - Статистика

Сума: 52
52
Середнє арифметичне: x̄=13
x̄=13
Медіана: 11
11
Діапазон: 22
22
Дисперсія: s2=92
s^2=92
Стандартне відхилення: s=9592
s=9 592

Інші способи розв'язку

Статистика

Покрокове пояснення

1. Знайдіть суму

Додайте всі числа:

4+26+8+14=52

Сума дорівнює 52

2. Знайдіть середнє арифметичне

Поділіть суму на кількість членів:

Сума
52
Кількість членів
4

x̄=13=13

Середнє арифметичне дорівнює 13

3. Знайдіть медіану

Впорядкуйте числа за зростанням:
4,8,14,26

Порахуйте кількість термінів:
Існує (4) термінів

Оскільки кількість елементів є парною, слід визначити два середніх елементи:
4,8,14,26

Щоб знайти значення, що знаходиться на півдорозі між двома середніми термінами, слід додати їх та поділити на 2:
(8+14)/2=22/2=11

Медіана дорівнює 11

4. Знайдіть розмах

Щоб знайти розмах, відніміть найнижче значення від найвищого.

Найвище значення дорівнює 26
Найнижче значення дорівнює 4

264=22

Діапазон дорівнює 22

5. Знайдіть дисперсію

Щоб знайти дисперсію, знайдіть різницю між кожним членом та середнім арифметичним, возвести результату в квадрат, скласти всі квадратні результати, і поділити суму на кількість членів мінус 1.

Середнє арифметичне дорівнює 13

Щоб отримати квадратні відмінності, відніміть середнє значення від кожного терміну та піднесіть результат до квадрату:

(413)2=81

(2613)2=169

(813)2=25

(1413)2=1

Щоб отримати дисперсію вибірки, складіть квадратні відмінності та поділіть їхню суму на кількість термінів мінус 1

Сума:
81+169+25+1=276
Кількість термінів:
4
Кількість термінів мінус 1:
3

Дисперсія:
2763=92

Дисперсія вибірки (s2) дорівнює 92

6. Знайдіть стандартне відхилення

Стандартне відхилення дорівнює квадратному кореню з дисперсії. Саме тому дисперсію зазвичай представляють у вигляді квадратної змінної.

Дисперсія: s2=92

Знайдіть квадратний корінь:
s=(92)=9592

Стандартне відхилення (s) дорівнює 9 592

Чому вчити це

Наука статистики займається збором, аналізом, інтерпретацією та представленням даних, особливо в контекстах невизначеності та варіації. Розуміння навіть найпростіших концепцій в статистиці допоможе нам краще обробляти та розуміти інформацію, яку ми зустрічаємо в повсякденному житті! Крім того, тепер збирається більше даних, ніж будь-коли в усій людській історії. З підвищенням потужності комп'ютерів вони дозволили легше аналізувати та інтерпретувати все більші набори даних. Через це статистичний аналіз стає все більш важливим в багатьох областях, дозволяючи урядам і компаніям повністю розуміти та реагувати на дані.