Введіть рівняння або задачу
Камера не розпізнає вхід!

Рішення - Статистика

Сума: 29
29
Середнє арифметичне: x̄=7,25
x̄=7,25
Медіана: 7,5
7,5
Діапазон: 6
6
Дисперсія: s2=6249
s^2=6 249
Стандартне відхилення: s=2500
s=2 500

Інші способи розв'язку

Статистика

Покрокове пояснення

1. Знайдіть суму

Додайте всі числа:

4+7+8+10=29

Сума дорівнює 29

2. Знайдіть середнє арифметичне

Поділіть суму на кількість членів:

Сума
29
Кількість членів
4

x̄=294=7,25

Середнє арифметичне дорівнює 7,25

3. Знайдіть медіану

Впорядкуйте числа за зростанням:
4,7,8,10

Порахуйте кількість термінів:
Існує (4) термінів

Оскільки кількість елементів є парною, слід визначити два середніх елементи:
4,7,8,10

Щоб знайти значення, що знаходиться на півдорозі між двома середніми термінами, слід додати їх та поділити на 2:
(7+8)/2=15/2=7,5

Медіана дорівнює 7,5

4. Знайдіть розмах

Щоб знайти розмах, відніміть найнижче значення від найвищого.

Найвище значення дорівнює 10
Найнижче значення дорівнює 4

104=6

Діапазон дорівнює 6

5. Знайдіть дисперсію

Щоб знайти дисперсію, знайдіть різницю між кожним членом та середнім арифметичним, возвести результату в квадрат, скласти всі квадратні результати, і поділити суму на кількість членів мінус 1.

Середнє арифметичне дорівнює 7,25

Щоб отримати квадратні відмінності, відніміть середнє значення від кожного терміну та піднесіть результат до квадрату:

(47,25)2=10562

(77,25)2=0062

(87,25)2=0562

(107,25)2=7562

Щоб отримати дисперсію вибірки, складіть квадратні відмінності та поділіть їхню суму на кількість термінів мінус 1

Сума:
10 562+0 062+0 562+7 562=18 748
Кількість термінів:
4
Кількість термінів мінус 1:
3

Дисперсія:
18 7483=6 249

Дисперсія вибірки (s2) дорівнює 6,249

6. Знайдіть стандартне відхилення

Стандартне відхилення дорівнює квадратному кореню з дисперсії. Саме тому дисперсію зазвичай представляють у вигляді квадратної змінної.

Дисперсія: s2=6,249

Знайдіть квадратний корінь:
s=(6,249)=2500

Стандартне відхилення (s) дорівнює 2,5

Чому вчити це

Наука статистики займається збором, аналізом, інтерпретацією та представленням даних, особливо в контекстах невизначеності та варіації. Розуміння навіть найпростіших концепцій в статистиці допоможе нам краще обробляти та розуміти інформацію, яку ми зустрічаємо в повсякденному житті! Крім того, тепер збирається більше даних, ніж будь-коли в усій людській історії. З підвищенням потужності комп'ютерів вони дозволили легше аналізувати та інтерпретувати все більші набори даних. Через це статистичний аналіз стає все більш важливим в багатьох областях, дозволяючи урядам і компаніям повністю розуміти та реагувати на дані.