输入一个方程或问题
无法识别摄像头输入!

解答 - 几何数列

公比是: r=11
r=11
该系列的和是: s=1464
s=-1464
此系列的通用形式是: an=111n1
a_n=-1*11^(n-1)
这个序列的第n项是: 1,11,121,1331,14641,161051,1771561,19487171,214358881,2357947691
-1,-11,-121,-1331,-14641,-161051,-1771561,-19487171,-214358881,-2357947691

其他解决方法

几何数列

逐步解答

1. 找到公比

通过将序列中的任何项除以前一项来找到公比:

a2a1=111=11

a3a2=12111=11

a4a3=1331121=11

该序列的公比(r)保持不变,并且等于两个连续项的商。
r=11

2. 求和

5 个额外 步骤

sn=a*((1-rn)/(1-r))

要找到系列的和,将第一项:a=1、公比:r=11和元素数目n=4插入几何级数求和公式:

s4=-1*((1-114)/(1-11))

s4=-1*((1-14641)/(1-11))

s4=-1*(-14640/(1-11))

s4=-1*(-14640/-10)

s4=11464

s4=1464

3. 找到通用形式

an=arn1

要找到系列的通用形式,将第一项:a=1 和公比:r=11 插入几何级数的公式:

an=111n1

4. 找到第n项

使用通用公式找到第n项

a1=1

a2=a1·rn1=11121=1111=111=11

a3=a1·rn1=11131=1112=1121=121

a4=a1·rn1=11141=1113=11331=1331

a5=a1·rn1=11151=1114=114641=14641

a6=a1·rn1=11161=1115=1161051=161051

a7=a1·rn1=11171=1116=11771561=1771561

a8=a1·rn1=11181=1117=119487171=19487171

a9=a1·rn1=11191=1118=1214358881=214358881

a10=a1·rn1=111101=1119=12357947691=2357947691

为什么学习这个

几何序列常用于解释数学、物理、工程、生物、经济、计算机科学、金融等领域的概念,因此它们是我们工具箱中非常有用的工具。例如,几何序列最常见的应用之一就是计算已经获得或未付的复利,这是与金融相关的最常见活动之一,可能意味着赚取或失去大量的金钱!其他应用包括但不仅限于计算概率、测算随时间变化的放射性以及设计建筑物。

术语和主题