输入一个方程或问题
无法识别摄像头输入!

解答 - 几何数列

公比是: r=0.9887640449438202
r=0.9887640449438202
该系列的和是: s=177
s=-177
此系列的通用形式是: an=890.9887640449438202n1
a_n=-89*0.9887640449438202^(n-1)
这个序列的第n项是: 89,88,87.01123595505616,86.03358161848251,85.06691216209505,84.11110416027377,83.16603557420328,82.23158573629087,81.30763533475951,80.3940663984139
-89,-88,-87.01123595505616,-86.03358161848251,-85.06691216209505,-84.11110416027377,-83.16603557420328,-82.23158573629087,-81.30763533475951,-80.3940663984139

其他解决方法

几何数列

逐步解答

1. 找到公比

通过将序列中的任何项除以前一项来找到公比:

a2a1=8889=0.9887640449438202

该序列的公比(r)保持不变,并且等于两个连续项的商。
r=0.9887640449438202

2. 求和

5 个额外 步骤

sn=a*((1-rn)/(1-r))

要找到系列的和,将第一项:a=89、公比:r=0.9887640449438202和元素数目n=2插入几何级数求和公式:

s2=-89*((1-0.98876404494382022)/(1-0.9887640449438202))

s2=-89*((1-0.9776543365736649)/(1-0.9887640449438202))

s2=-89*(0.02234566342633515/(1-0.9887640449438202))

s2=-89*(0.02234566342633515/0.011235955056179803)

s2=891.9887640449438235

s2=177.00000000000028

3. 找到通用形式

an=arn1

要找到系列的通用形式,将第一项:a=89 和公比:r=0.9887640449438202 插入几何级数的公式:

an=890.9887640449438202n1

4. 找到第n项

使用通用公式找到第n项

a1=89

a2=a1·rn1=890.988764044943820221=890.98876404494382021=890.9887640449438202=88

a3=a1·rn1=890.988764044943820231=890.98876404494382022=890.9776543365736649=87.01123595505616

a4=a1·rn1=890.988764044943820241=890.98876404494382023=890.966669456387444=86.03358161848251

a5=a1·rn1=890.988764044943820251=890.98876404494382024=890.9558080018212928=85.06691216209505

a6=a1·rn1=890.988764044943820261=890.98876404494382025=890.9450685860704917=84.11110416027377

a7=a1·rn1=890.988764044943820271=890.98876404494382026=890.9344498379123963=83.16603557420328

a8=a1·rn1=890.988764044943820281=890.98876404494382027=890.9239504015313581=82.23158573629087

a9=a1·rn1=890.988764044943820291=890.98876404494382028=890.9135689363456125=81.30763533475951

a10=a1·rn1=890.9887640449438202101=890.98876404494382029=890.9033041168361112=80.3940663984139

为什么学习这个

几何序列常用于解释数学、物理、工程、生物、经济、计算机科学、金融等领域的概念,因此它们是我们工具箱中非常有用的工具。例如,几何序列最常见的应用之一就是计算已经获得或未付的复利,这是与金融相关的最常见活动之一,可能意味着赚取或失去大量的金钱!其他应用包括但不仅限于计算概率、测算随时间变化的放射性以及设计建筑物。

术语和主题