输入一个方程或问题
无法识别摄像头输入!

解答 - 几何数列

公比是: r=1.6666666666666667
r=-1.6666666666666667
该系列的和是: s=4
s=-4
此系列的通用形式是: an=61.6666666666666667n1
a_n=6*-1.6666666666666667^(n-1)
这个序列的第n项是: 6,10,16.666666666666668,27.777777777777786,46.296296296296305,77.16049382716051,128.60082304526753,214.33470507544587,357.2245084590765,595.3741807651276
6,-10,16.666666666666668,-27.777777777777786,46.296296296296305,-77.16049382716051,128.60082304526753,-214.33470507544587,357.2245084590765,-595.3741807651276

其他解决方法

几何数列

逐步解答

1. 找到公比

通过将序列中的任何项除以前一项来找到公比:

a2a1=106=1.6666666666666667

该序列的公比(r)保持不变,并且等于两个连续项的商。
r=1.6666666666666667

2. 求和

5 个额外 步骤

sn=a*((1-rn)/(1-r))

要找到系列的和,将第一项:a=6、公比:r=1.6666666666666667和元素数目n=2插入几何级数求和公式:

s2=6*((1--1.66666666666666672)/(1--1.6666666666666667))

s2=6*((1-2.777777777777778)/(1--1.6666666666666667))

s2=6*(-1.7777777777777781/(1--1.6666666666666667))

s2=6*(-1.7777777777777781/2.666666666666667)

s2=60.6666666666666667

s2=4

3. 找到通用形式

an=arn1

要找到系列的通用形式,将第一项:a=6 和公比:r=1.6666666666666667 插入几何级数的公式:

an=61.6666666666666667n1

4. 找到第n项

使用通用公式找到第n项

a1=6

a2=a1·rn1=61.666666666666666721=61.66666666666666671=61.6666666666666667=10

a3=a1·rn1=61.666666666666666731=61.66666666666666672=62.777777777777778=16.666666666666668

a4=a1·rn1=61.666666666666666741=61.66666666666666673=64.629629629629631=27.777777777777786

a5=a1·rn1=61.666666666666666751=61.66666666666666674=67.716049382716051=46.296296296296305

a6=a1·rn1=61.666666666666666761=61.66666666666666675=612.860082304526752=77.16049382716051

a7=a1·rn1=61.666666666666666771=61.66666666666666676=621.433470507544587=128.60082304526753

a8=a1·rn1=61.666666666666666781=61.66666666666666677=635.722450845907645=214.33470507544587

a9=a1·rn1=61.666666666666666791=61.66666666666666678=659.53741807651275=357.2245084590765

a10=a1·rn1=61.6666666666666667101=61.66666666666666679=699.22903012752126=595.3741807651276

为什么学习这个

几何序列常用于解释数学、物理、工程、生物、经济、计算机科学、金融等领域的概念,因此它们是我们工具箱中非常有用的工具。例如,几何序列最常见的应用之一就是计算已经获得或未付的复利,这是与金融相关的最常见活动之一,可能意味着赚取或失去大量的金钱!其他应用包括但不仅限于计算概率、测算随时间变化的放射性以及设计建筑物。

术语和主题